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Abstract: We systematically explore the spectrum of gravitational perturbations in

codimension-1 DGP braneworlds, and find a 4D ghost on the self-accelerating branch of

solutions. The ghost appears for any value of the brane tension, although depending on

the sign of the tension it is either the helicity-0 component of the lightest localized massive

tensor of mass 0 < m2 < 2H2 for positive tension, the scalar ‘radion’ for negative tension,

or their admixture for vanishing tension. Because the ghost is gravitationally coupled to

the brane-localized matter, the self-accelerating solutions are not a reliable benchmark for

cosmic acceleration driven by gravity modified in the IR. In contrast, the normal branch

of solutions is ghost-free, and so these solutions are perturbatively safe at large distance

scales. We further find that when the Z2 orbifold symmetry is broken, new tachyonic in-

stabilities, which are much milder than the ghosts, appear on the self-accelerating branch.

Finally, using exact gravitational shock waves we analyze what happens if we relax bound-

ary conditions at infinity. We find that non-normalizable bulk modes, if interpreted as 4D

phenomena, may open the door to new ghost-like excitations.
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1. Introduction

Ever since Einstein introduced his famous “biggest blunder”, the cosmological constant

has been one of the most frustrating, yet intriguing aspects of General Relativity (GR).

Ironically, just as Einstein needed a Λ to make a static universe, if we take his theory of GR

as the description of gravity at the largest scales, we now seem to need a Λ to account for

the cosmic acceleration observed at redshifts z . 1.7 [1 – 3]. Unfortunately, manufacturing

a sufficiently small, positive cosmological constant from a consistent theory is not entirely

straightforward, to say the least. The methods of effective field theory have so far failed to

yield a satisfactory microscopic theory of the cosmological constant [4, 5]. Moreover, while

the mystery of the cosmological constant is usually posed as a problem for the field theory

of matter, one may even wonder if in fact it might really be related to our formulation of

gravity and inertia. Our hands-on experimental knowledge of gravity conforms with GR at

distances between ∼ 0.1 mm [6, 7] and, say, ∼ 10−100 MPc. At these large scales we enter

the domain of dark matter, a necessary component of the standard cosmological model

needed to explain galactic rotation curves, which cannot be accounted for with GR and

baryonic matter alone. At the moment, dark matter still needs to be completely explained
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by particle physics despite a plethora of reasonable candidates. A popular common theme

in recent research is that perhaps it is not matter that is needed, but a modification of

Newton’s law and/or gravity at large scales. This idea is not new: ever since galactic

rotation curves were found to be inconsistent with the luminous matter, such alternatives

have been pursued [8].

While it is natural to hope that modifying gravity could be an interesting alternative

to dark matter, why might one hope that it could help with the cosmological constant?

To illustrate this, we offer the following simple, heuristic argument. It is clear that in the

Einstein-Hilbert action, the cosmological constant term appears as the Legendre transform

of the field variable
√−g =

√

|det(gµν)|:

SEH = M2
4

∫

d4x
√−gR − 2

√−gΛ + . . . . (1.1)

From the canonical field theory rules, this means that this term trades the independent field

variable
√

|det(gµν)| for another independent variable Λ. This is exactly the same as in

quantum field theory, where one defines the generating function of the theory by shifting the

Lagrangian by a ‘coupling’
∫

φ(x)J(x). This trades the independent variable φ for another

independent variable J . After this transformation, the variable J is not calculable; it is an

external parameter that must be fixed by hand at the end of the calculation, by a choice of

boundary conditions. Once J is fixed to some value, φ is calculable in terms of it. The only

difference between the usual field theory Legendre transform and the cosmological constant

term arises because of gauge symmetries of GR, which render
√

|det(gµν)| non-propagating.

It is a pure gauge variable that can always be set to a constant number by a change of

coordinates. Therefore the Legendre transformation (1.1) loses information about only one

number, which must be fixed externally: namely, by the value of Λ itself. As a result, in GR

the cosmological constant is a boundary condition rather than a calculable quantity (or,

a free Lagrangian parameter). This really follows from the fact that the standard GR is

completely indistinguishable from unimodular gravity, except when it comes to interpreting

the cosmological constant, which however remains a problem for both. One may then hope

that by changing gravitational dynamics one could render
√

|det(gµν)| propagating, so

that, in turn, Λ is also rendered dynamical. This could provide us with new avenues for

relaxing the value of Λ. Such hopes have been already expressed before on a few occasions

[9 – 11]. However, analyzing modifications of gravity systematically, to check if they remain

compliant with the tests of GR, hasn’t been easy. Further, it is already known that some

simple modifications of GR, e.g. by inclusion of scalar fields, do not resolve the problem,

because they don’t change the 4D nature of the theory [4].

On the other hand, in recent years the braneworld paradigm has emerged as a com-

pelling alternative to standard Kaluza-Klein (KK) methods of hiding extra dimensions

and a new framework for solving the hierarchy problem. In this approach our universe

is realized as a slice, or submanifold, of a higher dimensional spacetime. Unlike in KK

compactifications, where the extra dimensions are small and compact, in the braneworld

approach they can be relatively large [12, 13], or infinite [14, 15]. We do not directly see

them since we are confined to our braneworld, rather, their presence is felt via correc-
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tions to Newton’s law. Many of the more fascinating phenomenological features of these

braneworld scenarios arise in models of warped compactification. In warped compactifi-

cations the scale factor of a four-dimensional brane universe actually varies throughout

the extra dimensions, providing us with a new way of making a higher dimensional world

appear four-dimensional. In general, one can conceal extra dimensions from low energy

probes by either 1) making the degrees of freedom which propagate through the extra di-

mensions very massive so as to cut the corrections to Newton’s law off at long distances, or

2) suppressing the couplings of the higher dimensional modes to ordinary matter so that

the 4D gravitational couplings dominate, ensuring that the corrections to Newton’s law

are very small at long distances. The latter case is naturally realized in warped models, so

that even infinite extra dimensions may be hidden to currently available probes.

Braneworlds provide a natural relativistic framework for exploring means of modifying

gravity. It was quickly realized that by using free negative tension branes, one could

alter Newton’s constant at large scales [16]. More dramatically, Gregory, Rubakov and

Sibiryakov (GRS) [17] noticed that by combining negative tension branes with infinite

extra dimensions, it was possible to “open-up” extra dimensions at very large scales, making

gravity effectively higher-dimensional very far away. However, it was soon discovered by the

authors that this model contained ghosts [18]. This was unfortunate since the metastable

graviton had many desirable gravitational properties, but from a particle physics point of

view the existence of a ghost is disastrous. Soon after, a radically new braneworld model

was put forward, the DGP (Dvali-Gabadadze-Porrati) model [19], with graviton kinetic

terms on the brane as well as in the bulk. The simpler versions of this theory are described

by the action

SDGP = M4+n
5

∫

(4 + n)D bulk

√−gR(g) + M2
4

∫

brane

√−γR(γ)

+ extrinsic curvature terms +

∫

brane
Lmatter . (1.2)

In general, there may be additional terms in the bulk. The key new ingredient here is

the induced curvature on the brane. It could be generated, as it was claimed initially, by

quantum corrections from matter loops on the brane [20], or again in a purely classical pic-

ture of a finite width domain wall1 as corrections to the pure tension Dirac-Nambu-Goto

brane action [22, 23]. Furthermore, it is also intriguing to note that induced curvature

terms appear quite generically in junction conditions of higher codimension branes when

considering natural generalizations of Einstein gravity [24] as well as in string theory com-

pactifications [25]. Using holographic renormalization group arguments [26], DGP was

shown to be equivalent in the infrared to GRS, however, crucially, it appeared to be ghost-

free, corroborating the perturbative analysis of [27]. This made it seem a real candidate for

a new gravitational phenomenology at large distances. The induced curvature term yields

a particularly interesting new phenomenon. In the case of a brane in 5D Minkowski bulk

it allows for a self-accelerating cosmological solution [28], for which the vacuum brane is

1Harking back to the early manifestations of braneworlds [21].
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de Sitter space, with constant Hubble parameter H = 2M3
5 /M2

4 , even though the brane

tension vanishes.

Clearly, the possibility of a fully consistent explanation of large scale acceleration is

extremely exciting. It has generated a great deal of activity and investigation into the DGP

set-up [29] (for a recent review, see [30]), with an astrophysical emphasis on black hole

solutions [31], solar system tests [32], shock wave limits [33], and of course, whether DGP

can truly explain dark energy [34]. Although many cosmologists have already embraced

the DGP model, it has been found to suffer from various problems. There is the issue of

strong coupling [35 – 38], related to the feature that the graviton interactions go nonlinear

at intermediate scales. More importantly, various investigations pointed out that there are

ghosts on the self-accelerating branch [37 – 39], however this debate still persisted.

Our aim here is to explore this issue in full detail. Since most of the explicit work on

DGP has been done for the simplest case of a brane in flat 5D bulk, with the dynamics

given by (1.2), we will work in the same environment, and start with a review of this case.

We will next consider the spectrum of small perturbations of the cosmological vacua of

DGP, which describe a 4D de Sitter geometry. One of the aspects of the literature on

braneworld perturbations (as opposed to braneworld cosmological perturbations!) that has

been debated is the alternate approaches of direct ‘hands-on’ calculations, which analyze

the curved space wave operator for the gravitational perturbation directly [14, 40, 41] and

the “effective action” approach, which was used to particular effect to confirm the ghost

[18] of the GRS model via a radion mode analysis [42]. Naturally these approaches should

be entirely equivalent, and we will indeed see that. The technical complications in the

identification of the spectrum of DGP gravity arise from the mixed boundary conditions

for perturbations that may obscure the computation of the norm.

The relevant modes in the spectrum of perturbations for addressing the concerns about

stability are the tensors and the scalars. By going to a unitary gauge, we will see that

the tensors are generically organized as a gapped continuum of transverse-traceless tensor

modes, with 5 polarizations per mass level, and an isolated localized normalizable tensor,

which lies below the gap. On the normal branch, this localized tensor is massless, implying

that it has only two helicity-2 polarizations; on the self-accelerating branch it is massive,

with 0 < m2 < 2H2 for positive tension, and has 5 polarizations. When the brane tension

is positive, the helicity-0 mode is the ghost, precisely because its mass sits in the region

prohibited by unitarity, explored in [43 – 46]. Furthermore, the propagating scalar mode, or

the ‘radion’, is tachyonic. This tachyonic instability of scalar perturbations is very generic,

and by and large benign (see section 3.2). Moreover, the tachyonic scalar completely

decouples on the normal branch in the limiting case where the bulk ends on the horizon2.

On the self-accelerating branch, the scalar mode remains tachyonic but mostly harmless

for positive tension branes, but as the tension vanishes it mixes with the helicity-0 tensor,

and prevents the ghost from decoupling even in the vacuum by breaking the accidental

symmetry of the massive tensor theory in de Sitter space in the limit m2 = 2H2, studied in

2We remind the reader that the situation here is similar to the single positive tension brane in the RS

model where the radion also decouples.
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partially massless theories [43, 45, 46]. This mode becomes a pure and unadulterated ghost

when the brane tension is negative, because it contains the brane Goldstone mode which

does not decouple in a way similar to the GRS model [17, 18]. This is completely consistent

with the claim of [37] that self-accelerating branch always have a ghost-like mode, for all

values and signs of the brane tension. Their analysis, based on the extension of Goldstone

theorem from gauge theory to gravity, agrees with the results of the detailed gravitational

perturbation theory. Thus the self-accelerating solutions always have a ghost, and therefore

do not represent a reliable benchmark for an accelerating universe in their present form.

On the other hand the normal solutions are ghost-free, and thus may be useful as a model

of gravitational modifications during cosmic acceleration.

Our calculations further allow us to extend the analysis to perturbations which are not

Z2-symmetric around DGP branes. This symmetry can be relaxed for braneworld models3,

and actually this may be a more natural setting for the DGP setup which is more closely

analogous to finite width defects or quantum corrected walls. In fact, in general braneworld

models, when the requirement of Z2-symmetry is dropped one can get a whole range of

interesting gravitational phenomenology, including self-acceleration, without appealing to

induced gravity [48, 49]. We will show here that if Z2-antisymmetric modes are allowed,

then in addition to the ghost, there is an extra excitation which corresponds to the free

motion of the DGP brane. This mode is tachyonic, and while it decouples on the normal

branch in the single brane limit, it persists on the self-accelerating branch of DGP solutions.

Nevertheless it still remains tame, since the scale of instability is controlled by the Hubble

parameter, and so the instability may remain very slow.

The presence of the ghost in the 4D description of the self-accelerating solutions of

DGP indicates that the instability originates from the ‘reduction’ of the theory, and may

not really represent a fundamental problem of the bulk set-up. A different prescription

for boundary conditions might be able to circumvent the contributions from the brane

localized ghost. However this requires rather special boundary conditions very far from

the brane mass, that would not normally arise dynamically in a local theory. They allow

the leakage of energy to, or from, infinity. Worse yet, an explicit exploration of potentials

of relativistic sources shows that in this case other modes behave like ghosts, if interpreted

in the 4D language. We can see this directly from the gravitational shock wave solutions

which include the contributions from the modes that are not localized on the brane.

The paper is organized as follows. In the next section we will review some of the salient

features of the DGP model, describing its two branches of background solutions, the normal

branch and the self-accelerating branch. In section 3, we will discuss the perturbation

theory around the 4D cosmological vacua of DGP, and identify its occult sector by an

explicit calculation. In section 4, using gravitational shock waves, we will consider what

happens when we include the contributions from non-normalizable bulk modes to the long

range gravitational potential of brane masses. We will summarize in section 5.

3The Randall-Sundrum model [13, 14] was Z2-symmetric by construction, enabling to interpret it as a

dual AdS/CFT with a UV cut-off and coupling to gravity [47].
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2. What are DGP braneworlds?

We will work with the simplest and most explicit incarnation of DGP, where our universe

is a single 3-brane embedded in a 5 dimensional bulk spacetime. The bulk is locally

Minkowski and the brane carries the curvature of the induced metric as well as the brane

localized matter. The induced curvature terms will generically arise from the finite brane

width corrections. The brane may be viewed as a δ-function source in the bulk Einstein

equations, whose dynamics ensues from the total stress-energy conservation that follows

from the covariance of the theory. Alternatively the brane may be treated as a common

boundary of two distinct regions, M+ and M− in the bulk M = M+ ∪M−, which are on

the different sides of the brane Σ = ∂M+ = ∂M−. The boundary conditions at the brane

are given by the Israel equations [50], which correspond precisely to the brane equations of

motion. These two approaches are physically completely equivalent because the theory is

completed with the inclusion of the Gibbons-Hawking boundary terms [51], which properly

covariantize the bulk Einstein-Hilbert action in the presence of a boundary. As a result,

varying with respect to the metric gives the correct boundary equations as well as the

correct bulk. The simpler δ-function form of the field equations then corresponds to the

unitary gauge, realized by going to brane Gaussian-normal coordinates, which essentially

describe the brane’s rest frame in the bulk, and then gauge fixing residual gauge invariance.

The dynamics of the model can therefore be derived from the action

S = M3
5

∫

M
d5x

√−gR + 2M3
5

∫

Σ
d4x

√−γ∆K +

∫

Σ
d4x

√−γ(M2
4R− σ + Lmatter) (2.1)

Here gab is the bulk metric with the corresponding Ricci tensor, Rab (in M = M+ ∪M−).

The induced metric on the brane is given by γab and its Ricci tensor is Rab, while σ is the

brane tension. The extrinsic curvature of the brane is given by Kab = −1
2Lnγab, where Ln

is the Lie derivative of the induced metric with respect to unit normal, na, oriented from

M− into M+; ∆Kab = K+
ab − K−

ab is the jump of Kab from M− to M+, and Lmatter is

the Lagrangian of brane localized matter fields, with vanishing vacuum expectation value,

because the brane vacuum energy was explicitly extracted as tension.

In what follows we will use different gauges for the bulk geometry, because the brane

Gaussian-Normal gauge is very convenient for counting up the modes in the spectrum of

the theory, while other gauges may be easier to compute the effective actions for particular

modes. Thus, thinking of the solutions geometrically as a bulk in which the brane moves, we

will write the field equations which follow from (2.1) as separate bulk and brane equations

of motion respectively. These are valid in an arbitrary gauge, and may be thought of as a

breakdown of the full set of field equations on a space with a boundary, where the boundary

conditions describe a codimension-1 brane. The bulk equations of motion are simply the

vacuum Einstein equations,

Gab = Rab −
1

2
Rgab = 0 , (2.2)

whereas the brane equations of motion are given by the Israel junction conditions [50],

Θab = M3
5 ∆ [Kab − Kγab] + M2

4 (Rab −
1

2
Rγab) +

σ

2
γab =

1

2
Tab . (2.3)
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where

Tab = − 2√−γ

∂(
√−γLmatter)

∂γab
, (2.4)

explicitly does not include the brane energy-momentum, σγab.

In most of what follows we will impose Z2 orbifold symmetry about the brane (section

3.5 will deal with general perturbations). In other words, we will identify M+ and M−,

restricting the dynamics to the Z2 symmetric action given by

S = 2M3
5

∫

M
d5x

√−gR + 4M3
5

∫

Σ
d4x

√−γK +

∫

Σ
d4x

√−γ(M2
4R− σ + Lmatter) (2.5)

where Kab = K+
ab = −K−

ab. The bulk equations of motion (2.2) are of course unchanged,

while the brane equations of motion simplify to

Θab = 2M3
5 [Kab − Kγab] + M2

4 (Rab −
1

2
Rγab) +

σ

2
γab =

1

2
Tab . (2.6)

2.1 Background solutions

Cosmological DGP vacua describe tensional branes in 5D locally Minkowski patches glued

together such that the jump in extrinsic curvature matches the tension and the intrinsic

Ricci curvature contributions as in Eq. (2.6). The solutions can be easily constructed by

taking a bulk geometry which solves the sourceless bulk equations (2.2), and slicing it

along a trajectory (t(τ), R(τ)) which solves (2.3). Then R becomes the cosmological scale

factor and τ the comoving time coordinate. Such techniques have been used before in the

RS2 framework [52, 53]. When the brane only carries nonzero tension, its worldvolume

is precisely a 4D de Sitter hyperboloid representing the 4D de Sitter embedding in a

5D Minkowski space as required by the symmetries of the problem [54]. This solution

generalizes the geometry of Vilenkin-Ipser-Sikivie inflating domain walls in 4D [55], and

was in fact also found in [56] in the context of finite thickness domain walls.

In conformal coordinates xa = (xµ, y), the full background metric is given by

ds2 = ḡabdxadxb = a2(y)
(

dy2 + γ̄µνdxµdxν
)

, (2.7)

where

γ̄µνdxµdxν = −dt2 + e2Ht d~x2 . (2.8)

and

a(y) = exp(εHy), ε = ±1. (2.9)

The bulk spacetime, M, is the image of the line 0 < y < ∞, with the brane positioned

at y = 0. In DGP brane induced gravity theory there exist two distinct branches of bulk

solutions, labelled by ε = ±1. The solution with ε = −1 is commonly referred to as the

normal branch whereas the solution with ε = +1 is referred to as the self-accelerating

branch, a terminology which will become transparent shortly. The brane metric in (2.8)

represents the 4D de Sitter geometry in spatially flat coordinates, which cover only one

half of the 4D de Sitter hyperboloid. The complete cover with global coordinates involves

the metric ds2 = −dτ2 + 1
H2 cosh2(Hτ)dΩ3 describing a sequence of spatial spheres S3, of
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Figure 1: Embedding of a de Sitter brane in a flat 5D bulk. The brane world volume is the

hyperboloid in the Minkowski bulk. The normal branch (ε = −1) corresponds to keeping the interior

of the hyperboloid, and its mirror image around the brane. In contrast, for the self-accelerating

branch (ε = +1), we keep the exterior, and its reflection. The latter scenario includes the inflating

tensionless brane solution.

radius 1
H cosh(Ht) and spatial line element dΩ3, which initially shrink from infinite radius

to radius 1/H, and then re-expand back to infinity.

The intrinsic curvature H is given by the tension, as dictated by the brane equations

of motion (a.k.a. brane junction equations) (2.3) at y = 0,

3M2
4 H2 − 6εM3

5 H =
σ

2
. (2.10)

The solutions are

H =
εM3

5

M2
4

[

1 ±
√

1 +
M2

4 σ

6M6
5

]

. (2.11)

This equation suggests that there are in fact four possible values of the intrinsic curva-

ture. However this is not the case. It is easy to see that only two of these solutions are

independent. Indeed, note that a bulk reflection z → −z and a time reversal t → −t map

two of the solutions (2.7,2.8) with H < 0 onto the solutions with H > 0 simultaneously

reversing the sign of ε. Thus without any loss of generality we fix the signs by requiring

that a positive tension corresponds to positive intrinsic curvature H, so that

H =
M3

5

M2
4

[

ε +

√

1 +
M2

4 σ

6M6
5

]

. (2.12)
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We can embed these solutions in the bulk as in figure 1 [33]. For ε = 1, or “self-

accelerating” branch, we retain the exterior of the hyperboloid. For ε = −1, or the “normal

branch”, we keep the interior of the hyperboloid. It is now clear whence the terminology: on

the self-accelerating branch, even when the tension vanishes, σ = 0, the geometry describes

an accelerating universe, with a non-vanishing curvature (H = 2M3
5 /M2

4 ) produced solely

by the modification of gravity. The scale of the curvature needs to be specially tuned to the

present horizon scale of ∼ 10−33 eV, which corresponds to about M5 ∼ 40 MeV [28, 29],

but once this is done one may hope to explain the current bout of cosmic acceleration even

without any Standard Model vacuum energy. The self-accelerating branch of solutions are

a distinct new feature of the DGP model, they do not exist on Z2-symmetric brane without

the induced gravity terms on the brane [54, 28]. However, related solutions may arise in

theories with asymmetric bulk truncations [48, 49].

2.2 How do we obtain 4D gravity in the DGP model?

A crucial question is: given the cosmological DGP vacua reviewed above, how could there

be a low energy 4D gravitational force between masses inhabiting them? Unlike in RS2,

for solutions given by (2.8) and (2.10), the ‘apparent’ warping of the bulk cannot play a

significant role in manufacturing 4D gravity at large distances. In RS2 bulk gravitational

effects pull the KK gravitons away from the brane, strongly suppressing their couplings

to brane localized matter. As a result, the extra dimension is hidden. That does not

happen here because the bulk in (2.8) is locally flat. Moreover, on the self-accelerating

backgrounds the bulk volume is infinite, and so the 4D graviton zero mode is decoupled: it

is not perturbatively normalizable, and the mass scale which governs its coupling diverges.

Although the bulk volume for the normal branch solutions is finite for finite 1/H, and there

is a normalizable graviton mode, its coupling4 is g0 ∝ H/M3
5 , and so it also decouples in

the limit H → 0 [33]. In fact, from the general embedding of a 4D de Sitter hyperboloid in

5D Minkowski space (2.8) we see that the H → 0 limit corresponds to taking the radius of

extrinsic curvature of the hyperboloid on the normal branch to infinity, de facto pushing it

to the spatial infinity of Minkowski space. In this limit the bulk volume between the brane

and the horizon diverges, which is why the zero mode graviton decouples. This agrees with

the perturbative analysis of the H = 0 case of [19, 27] where the zero mode graviton was

completely absent. Hence 4D gravity ought to emerge from the exchange of bulk graviton

modes.

Suppose first that the graviton kinetic terms reside only in the bulk. In an infinite

bulk, a typical bulk graviton sourced by a mass on the brane will not venture too far

from the brane because it would cost it too much energy. Nonetheless if kinetic terms

reside only in the bulk, a typical bulk graviton would still peel away from the brane and

explore the region of the bulk around the brane out to distances comparable to the distance

r between the source and a probe on the brane. The momentum transfer by each such

virtual graviton to the brane probe would be ∼ 1/p, where p is the 4D momentum along

4This formula is precisely the analogue of the Gauss law relation between bulk and effective 4D Newton’s

constant in models with large extra dimensions [12].
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the brane, as dictated by the 5D graviton propagator and brane couplings. Thus the

gravitational potential would scale as 1/r2, and the resulting force as 1/r3. Such force-

distance dependence would reveal the presence of the extra dimension. This would remain

true even when H 6= 0 on the normal branch. Although a zero mode is present in this

case, it cannot conceal the extra dimension because it would still be too weakly coupled to

provide the dominant contribution to the long range force at sub-horizon scales.

The induced curvature terms on the brane change this in DGP. In order for this trick

to work, one needs M4 to be big. In this case, the brane localized kinetic terms effectively

pull the zero mode gravitons closer to the brane, making their exploration of the bulk at

distances shorter than rc ∼ M2
4 /2M3

5 energetically costly [19, 27]. This alters the scaling of

the momentum transfer to 1/p2 for momenta p > M3
5 /M2

4 , which in turn produces a force

which scales as 1/r2. This is manifest from the explicit form of the graviton propagator

projected on to the Minkowski brane (i.e. the H = 0 limit of the normal branch solutions

of (2.8) and (2.10)) [19, 27]:

G(p)|z=0 =
1

M2
4 p2 + 2M3

5 p

(1

2
ηµαηνβ +

1

2
ηµβηνα − 1

3
ηµνηαβ

)

. (2.13)

From the 4D point of view, the graviton resonance which is exchanged is composed of

massive tensor modes, and so it will contain admixtures of longitudinal gravitons. This is

encoded in the propagator (2.13) in the coefficient 1/3 of the last term of the spin projector,

as opposed to 1/2 which appears in the linearized limit of standard 4D GR. This difference

is an example of the venerated Iwasaki-van Dam-Veltman-Zakharov (IvDVZ) discontinuity

of modified gravity [57], and signifies the persistence of a scalar component of gravity in

the theory, that could conflict with the known tests of GR. However, it has been argued

for massive gravity [58] and similarly for the DGP model [59] that the extra scalar may be

tamed by nonlinearities once the correct background field of the source is included. The

idea is that the perturbative treatment of the scalar graviton breaks down at a distance

scale rV first elucidated by Vainshtein [58]. For DGP, for a source of mass m, this new

scale is given by rV ∼ (mr2
c/M

2
4 )1/3 [60, 61]. Below that distance, one can’t trust linearized

perturbation theory and must re-sum the background corrections, which should presumably

decouple the scalar graviton mode. Similar weakening of the scalar graviton coupling may

occur at cosmological scales if the universe is curved.

This scale dependence of the scalar graviton couplings has very interesting and impor-

tant implications for the DGP setup. It has been pointed out [35 – 38] that the effective

field theory description of DGP gravity will suffer from a loss of predictivity due to the

problems with strong couplings at distances rstrong ∼ (r2
c/M4)

1/3, which could be much

larger than the naive UV cutoff. The most recent analysis of this issue [38] however sug-

gests that the brane nonlinearities may push the scale of strong coupling down, to about

r̃strong ∼ rstrong/
√

Mearth/M4 ∼ 1cm on the surface of the Earth, possibly making DGP

marginally consistent with current table top experimental bounds [6, 7]. In what follows we

will assume this claim [38] and imagine that we work in the perturbative regime of DGP,

although we feel that this issue deserves further attention. We note that the exploration

of DGP with gravitational shock waves [33] shows that the scalar graviton decouples from
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the background of relativistic sources, indicating that the coupling is effectively suppressed

by the ratio of
√

(T µ
µ)2/T µνTµν of the source. Note, that this is not enough to ascertain

that a theory is phenomenologically safe. For example, a Brans-Dicke theory will admit

identical shock waves as ordinary GR for any value of the Brans-Dicke parameter ω, while

the observations require that ω ≥ 5000. Thus one still needs to study the model for slowly

moving sources to check if the predictions agree with observations. However one may hope

that the strong coupling problems might be resolved in a satisfactory fashion. After all,

the shock waves [33] remain valid down to arbitrarily short distances from the source, be-

having much better than they are entitled to given the concern about the strong coupling

problems.

In what follows we will focus on uncovering the ghosts (and/or other instabilities) on

the self-accelerating branch, and a discussion of their implications for DGP. Before we turn

to this, we should stress that there is no technical inconsistency between our results and the

earlier claims that there are ghost-free regimes in DGP [19, 27]. Indeed: starting with the

backgrounds of the family (2.8,2.10) and fixing M5 and M4, the only way to consistently

take the limit to H → 0 is to pick the normal branch solutions and dial the brane tension σ

to zero. In this way one reproduces the H = 0 brane backgrounds with fixed M5, M4 that

were studied in [19, 27]. Moreover, ghosts may also be absent if the brane geometry is anti

de Sitter, as opposed to dS [62]. Thus the results of the perturbative analysis of [19, 27],

implying the absence of ghosts and other instabilities on H = 0 branes, applies only to

the normal branch backgrounds of DGP (2.8), (2.10). In fact, our results will confirm this

for the general H 6= 0 backgrounds of the normal branch, showing that they are ghost-

free. However the analysis of [19, 27] has nothing to say about the self-accelerating branch

solutions, and specifically about the σ = 0 limit, that describes a universe where cosmic

acceleration arises from modification of gravity alone. In what follows we will confirm that

in all those cases there are ghosts, which invalidate the self-accelerating branch solutions

in their present form as realistic cosmological vacua.

3. The occult sector of DGP

We now turn to the exploration of the spectrum of light modes in the gravitational sector of

DGP, around the cosmological vacua (2.8), (2.10). We will confirm that there are ghosts in

the 4D effective field theory description on the self-accelerating branch of DGP solutions.

More specifically: in the 4D effective field theory which describes the perturbative regime of

self-accelerating branch of DGP backgrounds (2.8), (2.10) between the Vainshtein scale rV

and the scale of modification of gravity rc = m2
pl/2M

3
5 there are scalar fields with negative,

or vanishing, kinetic term around the vacuum, which couple to the brane-localized matter

with at least gravitational strength. Now, this may appear surprising at the first glance:

there are no ghosts in the action (2.1) of the full 5D bulk theory. Indeed, the full bulk

Lagrangian in (2.1) does not appear to contain any instabilities. However, the background

solutions (2.8), (2.10) of (2.1) involve an end-of-the-world brane, which is a dynamical

object, whose world-volume is determined by (2.3). The problems arise because the brane

will curl up and wiggle when burdened with a localized mass, in a way that alters the
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gravitational fields of the source mass, spoiling the 4D guise of the theory. Thus the

perturbative ghost encountered in 4D theory is really a diagnostic of the failure of the

4D perturbation theory to describe the dynamics of the long range gravity on the self-

accelerating solutions. Thus although the applications [28, 29, 63] of the self-accelerating

solutions to 4D cosmology are interesting and tempting, the presence of the ghost renders

them unreliable at the present stage of understanding of the theory, and hence de facto

inadequate as a method of accommodating the present stage of cosmic acceleration.

In the following subsections we will identify the independent degrees of freedom de-

scribing small perturbations around DGP vacua in both branches, derive their linearized

equations of motion and solve them. We will then compute the four dimensional effective

action, isolate the ghost of the 4D theory, and discuss its consequences.

The physical interpretation of these solutions is based on the mathematical analysis

of a differential operator derived by considering perturbations of Einstein’s equations: the

Lichnerowicz operator ∆Lhab. This operator acts on a five-dimensional spacetime with a

timelike boundary (the brane). We can solve these perturbation equations in whatever

gauge we like, however, in order to get a braneworld interpretation of the results, the

cleanest procedure we can follow is to separate this problem (operator plus space on which

it acts) into a direct sum of a purely four-dimensional operator acting on a four-dimensional

spacetime, and a self-adjoint ordinary differential operator acting on the semi-infinite real

line. Obviously this latter operator acts on the space perpendicular to the brane, and

hence to really benefit from this factorization, in these coordinates the brane should be

held at a fixed coordinate position. Once we have made this decomposition, we will be

able to identify the physical states and their norms from the braneworld point of view. To

this end, we should write the perturbation in its irreducible components with respect to

the braneworld, correctly identify the degrees of freedom corresponding to “motion” of the

brane, and reduce our perturbation equations to a self-adjoint form.

3.1 Learning to count: mode expansion

We turn to the linearized perturbations hab(x, y) about the background metric (2.7), (2.8),

(2.10), defined by the general formula

ds2 = a2(y)
(

γ̂ab + a(y)−3/2hab(x, y)
)

dxadxb , (3.1)

where we use the shorthand γ̂abdxadxb = dy2 + γ̄µνdxµdxν . Note that a(y) = exp(εHy) as

specified in (2.7), (2.8), (2.10). From now on, we will raise and lower 4D indices (µ, ν, . . .)

with respect to the 4D de Sitter metric γ̄µν , and designate 4D de Sitter covariant derivatives

by Dµ. Our normalization convention for the perturbations in (3.1) reflects after-the-fact

wisdom, in that it simplifies the bulk mode equations to a Schrödinger form, as we will see

later on.

Since the spacetime ends on the brane, if we fix the gauge in the unperturbed solution

(2.7), (2.8), (2.10) such that the brane resides at y = 0, a general perturbation of the

system will also allow the brane itself to flutter, moving to

y = F (xµ) . (3.2)
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The explicit expressions for the perturbations hab, F are obviously gauge-dependent. Now,

to consider their transformation properties under diffeomorphisms

y → y′ = y + ζ(x, y) ,

xµ → x′µ = xµ + χµ(x, y) , (3.3)

we should first classify them according to different representations of the 4D diffeomorphism

group as

perturbations =















hµν , a tower of 4D tensors ;

hyµ , a tower of 4D vectors ;

hyy , a tower of 4D scalars ;

F , a single 4D scalar.

(3.4)

comprising in total 10 tensor + 4 vector + 1 scalar towers = 15 towers of degrees of

freedom plus one more 4D scalar, i.e. precisely the number of independent fluctuations of

a symmetric 5 × 5 bulk metric and the brane location. Clearly, not all of these degrees of

freedom are physical: some can be undone by diffeomorphisms (3.3). Indeed, we can easily

derive the explicit infinitesimal transformation rules,

h′
µν = hµν − a3/2

(

Dµχν + Dνχµ + 2εHζγ̄µν

)

,

h′
yµ = hyµ − a3/2

(

Dµζ + ∂yχµ

)

,

h′
yy = hyy − 2a3/2

(

∂yζ + εHζ
)

,

F ′ = F + ζy=0 , (3.5)

where we have used that ∂ya = εH a.

In order to have a clear braneworld interpretation of variables, we find it convenient to

work in the Gaussian-normal (GN) gauge (see e.g. [64]), in which any orthogonal component

of the metric perturbation vanishes. Given any perturbation (3.4), we can transform to a

GN gauge by picking the gauge parameters ζ, χµ

ζ =
1

2a

∫ y

0
dya−1/2hyy ,

χµ =

∫

dy a−3/2hyµ − Dµ

∫

dy ζ , (3.6)

which set h′
yν and h′

yy to zero. This still leaves us with 10 components of hµν and the brane

location F (omitting the primes), accompanied by 5 residual gauge transformations

ζ =
f(x)

a
,

χµ = χµ
0 (x) +

1

εHa
Dµf(x) , (3.7)

which can remove several more mass multiplets from the perturbations. However these

could only be zero modes of some of the bulk fields, because of the restricted nature of

the bulk variation of (3.7). Rather than completely gauge fix the perturbations now, it is
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more useful to resort to dynamics to find out which of the modes hµν , F are propagating

and which are merely Lagrange multipliers. To this end we can first decompose the tensor

hµν in terms of irreducible representations of the diffeomorphism group. This yields (for a

proof, see Appendix (6))

hµν = hTT
µν + DµAν + DνAµ + DµDνφ − 1

4
γ̄µνD2φ +

h

4
γ̄µν , (3.8)

where hTT
µν is a transverse traceless tensor, DµhTT µ

ν = hTT µ
µ = 0, with 5 components, Aµ

is a Lorentz-gauge vector, DµAµ = 0, with 3 components, and φ and h = hµ
µ are two

scalar fields (such that they correctly add up to the total of 10 degrees of freedom).

To get some feel of the dynamics before looking directly at the field equations, we

can check how these modes transform under the residual gauge transformations (3.7).

Substituting the residual gauge transformation (3.7) into (3.5), we find that the surviving,

symmetric, tensor mode in the GN gauge and the brane location field transform as

h′
µν = hµν − a3/2

(

Dµχ0 ν + Dνχ0 µ

)

− 2
a1/2

εH
Oµνf ,

F ′ = F + f , (3.9)

where Oµν = DµDν + H2γ̄µν , and we have used that a(0) = 1. If we further split up

the gauge transformation parameter χ0 µ = Eµ + 1
2Dµω, where DµEµ = 0, and apply the

decomposition (3.4) of hµν into the irreducible representations hTT
µν , Aµ, φ and h to (3.9),

after a straightforward computation we find that the irreducible representations transform

according to

h′TT
µν = hTT

µν ,

A′
µ = Aµ − a3/2Eµ ,

φ′ = φ − a3/2ω − 2a1/2

εH
f ,

h′ = h − a3/2D2ω − 2a1/2

εH
D2f − 8εHa1/2f ,

F ′ = F + f . (3.10)

Note that while the decomposition (3.8) of a general hµν into irreducible representa-

tions of the diffeomorphism group is kinematically unique, implying the breakdown of the

residual gauge transformations as in (3.10), it does not - in general - guarantee that differ-

ent modes won’t mix dynamically. Indeed, in writing (3.8) we are implicitly assuming that

different irreducible transformations live on different mass shells, and hence cannot mix dy-

namically at the quadratic level. This can be glimpsed at, for example, by noting that while

the symmetries of the problem allow us to write the couplings like hTT
µν(g1D

µDν + g2γ̄
µν)φ

etc, the TT conditions for hTT
µν would imply that such couplings are pure boundary terms

for non-singular couplings g1, g2. While this is true in general, the situation is considerably

subtler when the representations become degenerate. In this instance the decomposition

(3.8) requires more care. New accidental symmetries mixing different representations, no-

tably tensor and scalar, may arise, modifying (3.10) and dynamically mixing the modes.
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This occurs in the vanishing brane tension limit on the self-accelerating branch of DGP.

We will revisit this limit in more detail later on.

Keeping with the general situation for now, the transverse-traceless tensor hTT
µν is gauge

invariant, while the vector and the scalars are gauge dependent – we can gauge away the

zero mode of the vector and one of the scalars. In addition, we see how the motion of the

brane can be gauged away, choosing f = −F to set the location of the brane to y = 0. By

doing this, we are explicitly choosing coordinates which are brane-based, and the metric

perturbation (3.8) has an explicit OµνF term describing the brane fluctuation. In the brane-

based approach, we have completely and rigorously separated the Lichnerowicz operator

into brane parallel and transverse parts. However: once we have taken these coordinates,

we do not have the liberty of making residual gauge transformations parameterized by f

in (3.10), because they would move the brane from the coordinate origin. In effect, the

brane is tied to the dynamical fields φ and h in the bulk, but its fluctuation F turns into a

Goldstone boson of the system. We emphasize that this is a gauge choice. We are choosing

the brane-GN gauge to make the separation of the Lichnerowicz operator mathematically

clean. However, one can also choose to allow the brane to fluctuate freely (and indeed

the effective action computation is better done this way) by having a bulk-GN gauge, with

the f -gauge freedom in (3.10), and the brane sitting at y = F . In this case, there are no

fixed terms in the perturbation, and the brane motion enters into the boundary condition

via evaluation of the background solution at y = F . The actual equations of motion and

boundary terms in both gauges are identical, giving the same physical results and the same

dynamical scalar fields. Thus, explicitly in brane-GN gauge:

hµν = hTT
µν + DµAν + DνAµ +

(

Oµν − 1
4Oλ

λγ̄µν

)

φ +
2a1/2

εH
OµνF + 1

4hγ̄µν . (3.11)

To proceed with setting up the problem, we derive the field equations for the irreducible

modes. Having restricted to the family of brane-GN gauge perturbations (3.11), we can

substitute them in the field equations (2.2), (2.3) and after straightforward algebra write

the linearized field equations in the bulk,

δGab = 0 , (3.12)

where

a3/2δGµν = Xµν(h) − 1
2

[

∂2

∂y2 − 9H2

4

]

(hµν − hγ̄µν) , (3.13)

a3/2δGµy =
1

2

[

∂

∂y
− 3εH

2

]

Dν (hµν − hγ̄µν) , (3.14)

a3/2δGyy =
3εH

2

[

∂

∂y
− 3εH

2

]

h − 1

2

[

DµDν − γ̄µν(D2 + 3H2)
]

hµν , (3.15)

and

Xµν(h) = −1

2

(

D2 − 2H2
)

hµν + D(µDαhν)α − 1
2DµDνh

− 1
2 γ̄µν

[

DαDβhαβ −
(

D2 + H2
)

h
]

, (3.16)
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and on the brane,

δΘµν =

{

M2
4 Xµν(h) − M3

5

[

∂

∂y
− 3εH

2

]

(hµν − hγ̄µν)

}

y=0

= 1
2Tµν . (3.17)

Before we proceed with the details of the mode decomposition of this system by direct

substitution of (3.8), we note that the Lorentz-gauge vector Aµ turns out to be a free field

in the linearized theory in flat bulk. Thus the solutions for Aµ decouple from the brane-

localized matter in the leading order. They are irrelevant for the stability analysis which

is our purpose here. Hence we will set Aµ = 0 from now on, assuming we have arranged

for bulk boundary conditions which guarantee this in the linear order.

3.2 Fluctuations around the vacuum

First note that independently of matter on the brane, the yy and yµ equations must be

identically satisfied. In conjunction with the trace of the µν equation, this can be seen to

imply that a gauge can be chosen in which h = 0, and Oλ
λφ = 0. If in addition we have

no matter on the brane, then we see that

Oλ
λF = (D2 + 4H2)F = 0 , (3.18)

and so the metric perturbation (3.11) is completely transverse and traceless.

The remaining µν bulk equations then simplify considerably to give

[

D2 − 2H2 +
∂2

∂y2
− 9H2

4

]

hµν(x, y) = 0 . (3.19)

with the boundary condition

[

M2
4

(

D2 − 2H2
)

hµν + 2M3
5

(

∂

∂y
− 3εH

2

)

hµν

]

y=0

= 0 (3.20)

Now, to solve this equation we should carefully decompose the tensor into orthogonal

modes, which in general do not mix at the linearized level. Those are exactly the irreducible

representations we discussed previously. Thus using linear superposition, we can expand

the general metric fluctuation in hTT
µν and φ, the latter of which couples to the field F

through the boundary condition (3.20), leaving the TT-tensors with entirely homogeneous

boundary conditions. We therefore write

hµν =
∑

m

um(y)χ(m)
µν (x) + h(φ)

µν +
2a1/2

εH
OµνF (3.21)

where we have performed the mode expansion hTT
µν(x, y) =

∑

m um(y)χ
(m)
µν (x), in terms of

the 4D modes χ
(m)
µν (x) which satisfy (D2 − 2H2)χ

(m)
µν = m2χ

(m)
µν . We have also defined

the scalar mode h
(φ)
µν = Oµνφ, and separated variables in the scalar field by setting φ =

W (y)φ̂(x), where φ̂ is a general 4D tachyonic field obeying

(D2 + 4H2)φ̂ = 0 . (3.22)
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This tachyonic mode is present whenever we compactify the theory on an interval with de

Sitter boundary branes. It can be traced back to the repulsive nature of inflating domain

walls [55]. Here, it is simply an indication that a multi-de Sitter brane configuration requires

a special stabilizing potential, as is familiar already in the context of RS2 braneworld models

[65 – 67]. This kind of an instability is generically much slower and hence less dangerous

than the ghost, as it is governed by the scale τ ∼ 1/mtachyon ∼ H−1 that is as long as the age

of the universe. When tension is positive, this mode therefore remains largely harmless for

the phenomenological applications of the theory. However, on the self-accelerating branch

it mixes with the ghost in the vanishing tension limit on the self-accelerating branch, and

becomes the ghost itself for negative tension, as we will see later.

We now turn to the analysis of the TT perturbations which form the main part of the

propagator, and determine the norm on the transverse y-space. The bulk field equation

(3.19) and the boundary condition (3.20) reduce to the boundary value problem

u′′
m(y) +

(

m2 − 9H2

4

)

um(y) = 0 ,

M3
5

[

u′
m(0) − 3εH

2
um(0)

]

+ 1
2m2M2

4 um(0) = 0 , (3.23)

which is self-adjoint with respect to the inner product

〈u|v〉 =

∫ ∞

−∞
dy

(

M3
5 + M2

4 δ(y)
)

u(y)v(y) = 2M3
5

∫ ∞

0
dy u(y)v(y) + M2

4 u(0)v(0) . (3.24)

The eigenmodes um with different eigenvalues m are orthogonal. We choose the normal-

ization such that the discrete modes, if any, satisfy 〈um|un〉 = δmn, while the continuum

modes satisfy 〈um|un〉 = δ(m− n). This is simply a reflection of the fact that far from the

brane the bulk modes behave just like bulk plane waves, and the 4D mass is precisely the

py-component of the 5D momentum.

To determine the spectrum of the boundary value problem (3.23), (3.24) we rewrite

the boundary value problem (3.23) as a Schrödinger equation

u′′
m +

[

m2 − 9H2

4
+ (

M2
4

M3
5

m2 − 3εH)δ(y)
]

um = 0 . (3.25)

It is now clear that the solutions of (3.23) must fall into two categories: (i) one discrete

mode for each branch, localized to the δ-function potential, if it is normalizable according

to (3.24), and (ii) a continuum of ‘free’ modes, gapped by m ≥ 3
2H (see also [39]).

• m2 < 9H2

4 : the normalizable solution of (3.23) in the bulk, representing a single,

light, localized graviton on each branch, with a mass

m2
d =

M3
5

M2
4

[

3H − 2M3
5

M2
4

]

(1 + ε) , (3.26)

fixed by the boundary conditions (3.23), and wave function

um(y) = αm exp(−λmy) , αm =
1

M4

[

3M2
4 H − 2M3

5 (1 + ε)

3M2
4 H − 2M3

5 ε

]

1
2

. (3.27)
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where λm =
√

9H2

4 − m2 and 〈u|u〉 = 1. On the normal branch (ε = −1),

md = 0 . (3.28)

On the self accelerating branch (ε = +1),

0 < m2
d < 2H2 , for σ > 0 ;

m2
d > 2H2 , for σ < 0 . (3.29)

Herein is our first glimpse of the tensor ghost: for positive tension, the localized

light graviton mode on the self accelerating branch lies in the forbidden mass range

0 < m2 < 2H2 discussed in [44 – 46]. Its helicity-0 component is the ghost, as we will

review later on (see Appendix (7)).

• m2 ≥ 9H2

4 : the δ-function normalizable modes are

um(y) = αm sin(ωmy + δm) , αm =

√

m

πM3
5 ωm

, (3.30)

where ωm =
√

m2 − 9H2

4 and 〈um|um̄〉 = δ(m − m̄). The integration constant δm

which solves the boundary condition (3.23) is

tan δm =
2M3

5 ωm

3M3
5 εH − m2M2

4

(3.31)

Turning now to the scalar component h
(φ)
µν (x, y) = W (y)Oµν φ̂(x), it is not difficult to

see that it obeys
(

D2 − 2H2
)

h(φ)
µν = 2H2h(φ)

µν , (3.32)

(equivalent to a 4D mass m2 = 2H2). The bulk equation (3.19) then yields the wave

equation for W ,

W ′′(y) − H2

4
W (y) = 0 . (3.33)

The boundary condition (3.20) enforces a relation between φ̂ and F :

(

W ′(0) −
(3

2
εH − M2

4 H2

M3
5

)

W (0)

)

φ̂ = 2
(

1 − ε
HM2

4

M3
5

)

F . (3.34)

The wave function solutions for either of the DGP branches are

W (y) = α exp

(

−H

2
y

)

+ β exp

(

H

2
y

)

. (3.35)

From (3.24), the norm is determined by
∫ ∞
0 dy W 2(y), where the lower limit of integration

accounts for the unperturbed location of the brane at y = 0, around which we impose the

Z2 symmetry. Thus the α-mode is normalizable but the β-mode is not. We therefore set

β = 0. This choice, at least in principle, corresponds to prescribing boundary conditions at
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infinity, which ensure the brane is an isolated system. Thus setting β = 0, and separating

the variables by setting φ̂ = F in (3.34) we find

−
((1 + 3ε)H

2
− M2

4 H2

M3
5

)

α = 2
(

1 − M2
4 εH

M3
5

)

. (3.36)

However, we must be mindful of this choice because of the possible interplay with the brane

bending term (3.10), as we will see next.

Now: on the normal branch (ε = −1), it follows from (3.10) that the normalizable α-

mode is gauge-dependent: in fact, it is of the same form as the brane-bending mode since

it is proportional to a1/2 = exp
(

−H
2 y

)

. On the other hand the non-normalizable β-mode

is gauge-invariant by itself, and so setting it equal to zero is straightforward. Then (3.36)

gives α = 2/H, which means that the brane boundary condition (3.20) in fact precisely

sets the normalizable gauge-invariant mode αφ̂ − 2F/H to zero. Hence

hµν ≡ hTT
µν (3.37)

Thus the net effect of the α-mode is to undo the brane bending. This is because the

translational invariance of the brane-bulk system, which yields the residual gauge symmetry

(3.10) is linearly realized in the presence of the brane, which imposes gauge-invariant

boundary condition, so that the normalizable bulk mode and the brane bending completely

compensate each other. Put another way, the only consistent matter-free solution for the

normal branch DGP brane is where the brane does not move from y = 0, and only TT

GN perturbations in the metric are allowed. This, of course, should have been expected

all along, as it is just the statement that the radion field decouples in the case of single

UV brane with 4D Minkowski or de Sitter geometry embedded in the standard way in 5D

Minkowski or AdS space. Here we see explicitly how gauge invariance and normalizability

enter this subtle conspiracy to remove this mode, essentially allowing that any scalar bulk

perturbation localized to the brane can be bent away.

On the self-accelerating branch (ε = +1), the situation is very different: now, the

normalizable scalar mode is gauge-invariant by itself. The non-normalizable β-mode is

not, and so imposing boundary conditions which require β = 0 breaks the residual gauge

invariance (3.10). The brane bending mode F is the Goldstone field of the broken symmetry,

and the brane boundary condition (3.20) for a generic value of H (i.e. for non-zero tension)

yields

α = − 2

H

[

M3
5 − M2

4 H

2M3
5 − M2

4 H

]

, (3.38)

which pins the Goldstone F to the normalizable gauge-invariant scalar perturbation φ:

h(φ)
µν = − 2

H

[

M3
5 − M2

4 H

2M3
5 − M2

4 H

]

e−Hy/2OµνF . (3.39)

This perturbation represents a genuine radion, or physical motion of the brane with re-

spect to infinity. Although our choice of brane-GN gauge fixes the brane to the coordinate

position y = 0, it does so at the cost of, this time, breaking the residual gauge symmetry
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generated by f in (3.10) and introducing the explicit “book-keeping” OµνF term in hµν ,

which is the remnant of the translational zero mode of the brane. Had we instead allowed

the brane position to be arbitrary, at y = F , (without the OµνF term in (3.11)), the bound-

ary conditions at y = F would still have had the same form, since the F -terms would have

entered when evaluating the background at nonzero y. Both approaches are completely

equivalent, the former being more suitable to a brane based observer and the latter to an

asymptotic observer. The gauge transformation between these is a y-translation, which

therefore corresponds to real motion of the brane, just as in the 2-brane RS case [41]. The

absence of this mode on the normal branch reflects the fact that there is no distinguishable

motion of an individual Z2 symmetric brane.

When the tension is different from zero, the solutions χ
(m)
µν are precisely the TT-tensors

hTT
µν of (3.4) from the previous subsection. The scalar mode h

(φ)
µν has eigenvalue m2 = 2H2,

as seen from (3.32), and the eigenvalues of the eigenmodes χ
(m)
µν are all different from 2H2

when σ 6= 0. Thus the scalar mode φ, disguised as the tensor h
(φ)
µν , is orthogonal to all

χ
(m)
µν . Hence χ

(m)
µν coincide with the TT tensors hTT

µν , and so when there is no matter on the

brane, the solutions are given by

hµν(x, y) = αmd
e−λmd

yχ(md)
µν (x) +

∫ ∞

3H
2

dm um(y)χ(m)
µν (x)

+
(1 + ε)

H

{

a1/2OµνF −
[

M3
5 − M2

4 H

2M3
5 − M2

4 H

]

a−1/2OµνF

}

. (3.40)

This solution clearly remains valid on the normal branch even in the limit of vanishing

tension, σ → 0, and for the full range of σ < 0, because when ε = −1 the potentially

dangerous OµνF terms vanish identically.

However on the self-accelerating branch where ε = +1 the solution (3.40) – as it stands

– fails when the tension vanishes, σ = 0, because of the pole in φ, or α, (3.38), (3.39).

Indeed, (2.12) implies that when σ → 0, H → 2M3
5 /M2

4 , and so the parameter α in (3.38)

diverges. Thus the mode φ as given by (3.39) is ill-defined in this limit. At a glance, noting

that the coefficient of φ̂ in (3.34) vanishes, one may interpret equation (3.38) as implying

F = 0, thus fixing the brane rigidly at y = 0, and allowing φ̂ to fluctuate independently

of F . However, in light or the residual gauge transformations (3.10) and our gauge-fixing

β = 0, that removed the non-normalizable gauge-dependent bulk scalar, setting F = 0 also

would completely break the residual gauge symmetry group. This is dangerous, since it

may miss physical degrees of freedom, which warns us against such a quick conclusion. To

see what is really going on we must tread carefully.

What’s going on when the tension vanishes is that the mass of the localized tensor mode

on the self-accelerating branch approaches m2
d = 2H2, as is clear from (3.26). Further,

the bulk wave function of the lightest localized tensor (3.27) converges to exp(−λmd
y) =

exp(−Hy/2), i.e. it becomes identical to the bulk wave function of the gauge-invariant

scalar mode h
(φ)
µν . Thus the lightest tensor, h

TT(md)
µν , and the scalar h

(φ)
µν = Oµνφ become

dynamically degenerate, and can mix5 together: they both solve the 4D field equations

5This mixing has been noticed as the resonance instability in the shock wave analysis of [33], and

discussed at length in [68].
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(D2−4H2)χµν = 0 and have formally the same tensor structure. Now, it has been noted by

Deser and Nepomechie [43] that in the special case when the mass of the massive 4D Pauli-

Fierz theory in de Sitter space equals 2H2, the theory develops an accidental symmetry[43 –

46]. The tensor dynamics becomes invariant under the transformation χ
(
√

2H)
µν → χ

(
√

2H)
µν +

Oµνϑ, where ϑ is any solution of the equation (D2+4H2)ϑ = 0, affecting only the helicity-0

component of χ
(
√

2H)
µν .

Lifting this symmetry to the present case is considerably more intricate because of the

degenerate scalar h
(φ)
µν . Noting first that the wave profile of the lightest localized tensor is

now e−Hy/2 = 1/
√

a, the accidental symmetry of [43] shifts the bulk TT-tensor by

h′TT
µν = hTT

µν + a−1/2Oµνϑ . (3.41)

However given the higher-dimensional origin of the perturbations hµν we cannot arbitrarily

shift these modes around. The only gauge generators available to us, that could in prin-

ciple generate such shifts, are the residual gauge transformation rules of (3.9). However

as is clear from (3.9), none of the residual gauge transformations have the correct bulk

wave profile to yield (3.41). Thus the transformation (3.41) must be understood as the

Stückelberg symmetry of the problem: shifting χ
(
√

2H)
µν by a ϑ piece must be compensated

by shifting another field in the decomposition (3.8) to keep the total metric perturbation

hµν invariant. The only available mode with the correct wave profile, and the correct tensor

structure so as not to break the diffeomorphism invariance, is the normalizable scalar that

is invariant under (3.10). Thus the scalar must now be promoted into a Stückelberg field

for ϑ. Note that this is completely analogous to rewriting the massive U(1) gauge theory

in the Stückelberg form, formally giving up on the Lorentz gauge for Aµ by introducing

the Stückelberg scalar field.

So to properly account for the accidental symmetry on the self-accelerating brane in the

vanishing tension limit generated by ϑ, we must enhance the residual gauge transformation

group (3.10) by also including in it

h′TT
µν = hTT

µν + a−1/2Oµνϑ , φ′ = φ − a−1/2ϑ . (3.42)

Hence once we insert σ = 0 explicitly in the field equations (2.2), (3.20), we can separate

the field equations for the scalar and the lightest tensor from each other only after explicitly

gauge-fixing the Stückelberg symmetry generated by ϑ. The full field equations are merely

covariant under it because of the scalar field φ. Once we have gauge-fixed the brane at

y = 0, the boundary conditions at the brane will really relate F to a linear combination of

the helicity-0 tensor and the gauge-invariant normalizable scalar φ̂. A simple way to think

about the boundary conditions is to fix the ϑ gauge by completely removing the helicity-0

mode from the tensor and absorbing it into φ̂. Then the brane boundary condition (3.38)

just states that this ϑ-gauge fixed field φ̂ is fluctuating freely - but it does not disappear

from the spectrum. Indeed, we can go to a different ϑ-gauge, fixing it now such that the

φ̂ is completely eaten by the tensor χ
(
√

2H)
µν , which regains its helicity-0 component. This

of course is completely equivalent to the unitary gauge of a theory with the Stückelberg

fields, where the gauge fields eat Stückelberg and gain mass. This is crucial for the failure
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of the ghost to decouple in the tensionless brane limit, and is a simple way to understand

the analysis of [68].

However, neither of these gauges is convenient for the computation of the effective

action, to be pursued later on. Instead, we can pick another ϑ gauge by taking the general

solution (3.40) and defining a ϑ which removes the pole in (3.40) as σ → 0 and produces

a smooth limit [39, 68]. We can do this by a shift

αmd
χ(md)

µν (x) = Hµν(x) − αOµνF . (3.43)

Substituting this in (3.40) yields

hµν(x, y) = e−λmd
yHµν(x) +

∫ ∞

3H
2

dm um(y)χ(m)
µν (x)

+α
{

e−Hy/2 − e−λmd
y
}

OµνF +
2

H
eHy/2OµνF . (3.44)

Then carefully taking the limit σ → 0 (noting that α ∝ 1/σ, and λmd
= H/2+O(σ)) yields

hµν(x, y) = e−
H
2

y
(

Hµν(x) − yOµνF
)

+

∫ ∞

3H
2

dm um(y)χ(m)
µν (x) +

2

H
eHy/2OµνF . (3.45)

where the 4D tensor Hµν satisfies 6

(D2 − 4H2)Hµν = −HOµνF . (3.46)

Note that the trace of this equation yields Oλ
λF = (D2 +4H2)F = 0. In this gauge, a way

to think about Eq. (3.46) is to view the field F as the independent degree of freedom, and

the helicity-0 component of the graviton Hµν as being completely determined by the source

F . Yet, the brane localized matter can only feel its influence through the couplings to the

helicity-0 component of Hµν , as can be seen from Eq. (3.45), which shows that on the brane

at y = 0 the ∝ OµνF terms vanish. In this way, the tensor Hµν(x) retains five physical,

gauge-invariant degrees of freedom precisely because of this mixing with F , inherited from

the bulk scalar φ. In effect what happened in the limiting procedure is that the pole of

(3.40) was a pure gauge term of the Stückelberg gauge symmetry, and was absorbed away

by the choice of ϑ, leaving in its wake the smooth function (3.45).

3.3 Linearized fields of matter lumps

Here we include the contributions from localized stress-energy lumps on the brane. In the

linearized theory, the general solution is a linear combination of the homogeneous solution,

given by (3.40) or (3.45), describing propagating graviton modes, and a particular solution

comprising of a TT piece and the relevant brane bending term which describe the response

of the fields to the source. Thus we write:

hµν(x, y) = h(hom)
µν (x, y) + χ̃µν(x, y) +

2a1/2

εH
Oµνf(x) , (3.47)

6This follows from the σ → 0 limit of (D2
− m2

d − 2H2)Hµν from (3.43), or can be readily derived from

the equations of motion (3.19, 3.20).
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where the fields χ̃µν(x) and f(x) are the sought-after particular solutions that include the

effects of the brane sources. They must be the solution of the boundary value problem,
[

D2 − 2H2 +
∂2

∂y2
− 9H2

4

]

χ̃µν(x, y) = 0 ,

[

1
2M2

4

(

D2 − 2H2
)

χ̃µν + M3
5

(

∂
∂y − 3εH

2

)

χ̃µν

]

y=0

−2
(

M3
5 − M2

4 εH
)

(

Oµν −Oλ
λγ̄µν

)

f = −1
2Tµν(x) , (3.48)

Tracing the boundary condition immediately gives

Oλ
λf =

[

D2 + 4H2
]

f(x) = −
[

T

12(M3
5 − M2

4 εH)

]

. (3.49)

This fixes f(x) completely, as any homogeneous brane-bending term is accounted for in

h
(hom)
µν .

We can write the particular solution as a spectral expansion, using the properties

of the 4D mass eigenmodes determined in section 3.2. Formally, we consider the 4D

differential operator D2 − 2H2 whose tensor spectrum is given by TT-tensors χ
(p)
µν obeying

(D2 − 2H2)χ
(p)
µν = p2χ

(p)
µν , and expand the solutions and the sources as

χ̃µν(x, y) =

∫

p
vp(y)χ(p)

µν (x) , τµν(x) =

∫

p
τp χ(p)

µν (x) . (3.50)

where

τµν(x) = Tµν − 4(M3
5 − M2

4 εH)
[

DµDν − γ̄µν(D2 + 3H2)
]

f(x) . (3.51)

The χ
(p)
µν tensors are an orthonormal basis of the spectrum of D2 − 2H2, whose eigenvalues

p2 6= m2 are taken to be off mass shell as is usual in the inhomogeneous problem. Here,
∫

p is

a generalized sum, accounting for the integration over the continuum part of the spectrum

and the summation over the discrete, localized modes. Then the boundary value problem

(3.48) reduces to the system

v′′p(y) +

(

p2 − 9H2

4

)

vp(y) = 0 ,

M3
5

[

v′p(0) −
3εH

2
vp(0)

]

+ 1
2p2M2

4 vp(0) = −1
2τp , (3.52)

extending (3.23) of section 3.2 with a source term τp. We can write the solutions vp’s in

terms of the on-shell eigenfunctions um(y). First, rewrite (3.52) as

v′′p +
[

p2 − 9H2

4
+ (

M2
4

M3
5

p2 − 3εH)δ(y)
]

vp = − τp

M3
5

δ(y) . (3.53)

Then expanding as vp(y) = vp md
umd

(y) +
∫ ∞
3H/2 dm vp mum(y), substituting in (3.53) and

comparing with (3.25), and finally using the orthonormality of the eigenmodes um with

respect to the inner product (3.24), we find

vp(y) = −
[

umd
(y)umd

(0)

p2 − m2
d

+

∫ ∞

3H
2

dm
um(y)um(0)

p2 − m2

]

τp . (3.54)
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Hence we can rewrite the linearized field of the matter on the brane as

χ̃µν(x, y) =

∫

d4x′√−γ̄ Gµν
αβ(x, y;x′, 0)ταβ(x′) , (3.55)

where the Green’s function is given by the eigenmode expansion

Gµν
αβ(x, y;x′, 0) = −

∫

p

[

umd
(y)umd

(0)

p2 − m2
d

+

∫ ∞

3H
2

dm
um(y)um(0)

p2 − m2

]

χ(p)
µν (x)χ∗ (p)αβ(x′) ,

(3.56)

where the asterisk denotes complex conjugation. Thus in the case when the only source of

perturbation of the vacuum is matter on the brane, and the propagating geometric modes

are not excited, the brane geometry is perturbed by

δγµν = χ̃µν(x, 0) +
2ε

H
Oµνf (3.57)

where f is given by (3.49) and χ̃µν(x, 0) by (3.55). Note however that one must treat

the Green’s function (3.56) with care, because the summation
∑

p over the continuum

has a branch cut at m2 = 9H2/4, which can be seen from the form of the continuum

eigenfunctions presented in section 3.2.

The ghost is hidden in the localized mode contribution to Gµν
αβ(x, y;x′, 0), (i.e. the

umd
(y)umd

(0)

p2−m2
d

term), specifically, it resides in the helicity-0 component. We could divine the

ghost by computing the residues at the pole p2 = m2
d of the propagator. Alternatively, as

we will do in the next section, we can simply compute the effective action for small metric

fluctuations and unveil the ghost-like behavior from the negative contributions to it.

3.4 Forking the ghost: calculating the effective action

Let us now fork7 the ghost: we compute the effective 4D action of normalizable small

perturbations considered in the previous section, that will serve as a straightforward diag-

nostic of the ghost. We start with the general case of non-vanishing tension, σ 6= 0, and

consider the limit σ = 0 separately. Let us consider the general metric perturbation in

bulk GN gauge. Starting from (3.8), considering the µy and yy Einstein equations (3.14),

(3.15), and the mode decomposition discussed in the previous sections we can write,

δgµν(x, y) =
√

a(y)
(

Oµνφ + umd
(y)h(md)

µν (x) +

∫ ∞

3H
2

dm um(y)h(m)
µν (x)

)

,

δgyy = δgµy = 0 , (3.58)

where φ(x, y) = exp(−Hy/2)φ̂(x) as before, and the Oλ
λφ and h terms automatically cancel

each other in bulk GN gauge. In order to calculate the effective action, it is convenient to

fix the brane position so that it lies at y = 0, whilst maintaining the bulk GN gauge near

infinity. This can be done with a carefully chosen y-dependent gauge transformation:

xµ → xµ − ξµ , y → y − ξy , (3.59)

7“Forking”, or “dowsing”, is a practice which sometimes reveals an occult presence by means of a two-

pronged fork, whose role in our case is assumed by the second order effective action.
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where

ξµ(x, y) =

{

1
εHaDµ( φ̂

α + f) for y ¿ R

0 for y À R
, ξy(x, y) =

{

1
a( φ̂

α + f) for y ¿ R

0 for y À R
, (3.60)

where R > 0 is some arbitrary finite radius, and α is given in Eq. (3.36). The gauge

transformation (3.60) should be viewed as the limiting form of a smooth interpolating family

of test functions that continuously vary in the bulk. The new gauge is not Gaussian Normal

everywhere, interpolating instead between a brane-GN gauge at the brane positioned at

y = 0, and a bulk-GN gauge near infinity. The bulk metric perturbation in this gauge is

δgab → δgab(x, y) + ∇̄aξb + ∇̄aξb , (3.61)

where ∇̄ is the covariant derivative for ḡab. The brane metric perturbation in turn is

δγµν = hµν(x, 0) +
2ε

H
Oµν(

φ̂

α
+ f) , (3.62)

where f is the gauge transformation of section 3.3, needed to keep the tensor perturbation

transverse-traceless in the presence of matter perturbations. The second-order perturbation

of the total action is

S = M3
5

∫

M
d5x

√−ḡδgabδGab +
1

2

∫

Σ
d4x

√−γ̄δγµν (δΘµν − Tµν) , (3.63)

and to get the 4D effective action we should integrate out the bulk, substituting the mode

expansion for the radial coordinate y, while keeping all the 4D, x-dependent modes off-

shell. This means that in the explicit evaluation of the terms in the action (3.63) we

do not require that (D2 + 4H2)φ̂ = 0, or (D2 − m2 − 2H2)χ
(m)
µν = 0. In fact, once we

have used our Ansatz for the perturbations (3.58), which respects the TT conditions, as a

means for properly identifying the propagating degrees of freedom in the theory about the

backgrounds (2.7), we can relax these conditions when working out the effective action by

evaluating (3.63) on (3.58). The TT conditions for χ
(m)
µν will nevertheless still emerge from

the 4D field equations obtained by varying the effective action, just like in massive U(1)

gauge theory (see also [68]). We stress that we could have used the gauge-fixed action from

the start, enforcing TT constraints directly in the effective action. We won’t do so for the

sake of simplicity, because the results are completely equivalent at the classical level.

Using (3.61), (3.62) and the Bianchi identity ∇̄aδGab = 0, we find that to the quadratic

order in perturbations the action is

S = −M3
5

∫

d4x
√−γ̄

∫ ∞

0
dy a

√
ahµνδGµν − 2M2

5

∫

d4x
√−γ̄ ξa(x, 0)δGay |y=0

−1

2

∫

d4x
√−γ̄

[

hµν(x, 0) +
2ε

H
Oµν(

φ̂

α
+ f)

]

(δΘµν − Tµν) .

(3.64)
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From the metric (3.61) and Eqs. (3.13) - (3.15) it then follows that the variations of the

Einstein tensor obey

a
√

aδGµν = umd
(y)X(md)

µν +

∫ ∞

3H
2

dm um(y)X(m)
µν , (3.65)

δGµy |y=0 = − M2
4

4M3
5

[

m2
dumd

(0)Dν
(

h(md)
µν − h(md)γ̄µν

)

+

∫ ∞

3H
2

dm m2um(0)Dν
(

h(m)
µν − h(m)γ̄µν

)

]

, (3.66)

δGyy |y=0 = −1

2

[

DµDν − γ̄µν(D2 + 3H2)
]

[

umd
(0)h(md)

µν +

∫ ∞

3H
2

dm um(0)h(m)
µν

]

−3εH

2

(

M2
4

2M3
5

)

[

m2
dumd

(0)h(md) +

∫ ∞

3H
2

dm m2um(0)h(m)

]

−3

4
H2(1 + ε)(D2 + 4H2)φ̂ . (3.67)

In these equations we have been using the tensorial operator X
(m)
µν , defined by

X(m)
µν = Xµν(h(m)) + 1

2m2
(

h
(m)
µν − h(m)γ̄µν

)

. (3.68)

where Xµν(h(m)) is given by (3.16). We further use the formula for the variation of the

brane stress-energy, which is

δΘµν = M2
4

[

umd
(0)X(md)

µν +

∫ ∞

3H
2

dm um(0)X(m)
µν

]

+2
(

M3
5 − M2

4 εH
) [

DµDν − γ̄µν(D2 + 3H2)
]

f . (3.69)

A useful identity which follows from Bianchi identities and stress-energy conservation

DµXµν(h) = DµTµν = 0 is Dµ (δΘµν − Tµν) = −2M3
5 δGµy |y=0. Using it, the orthogo-

nality of mode functions um, the projections

(m2
d − 2H2)

〈

umd

∣

∣

∣
α exp

(

−H

2
y

)

〉

= −4(M3
5 − M2

4 εH)umd
(0) ,

(m2 − 2H2)
〈

um

∣

∣

∣
α exp

(

−H

2
y

)

〉

= −4(M3
5 − M2

4 εH)um(0) , (3.70)

and the defining equation (3.49) of the gauge parameter f , after a straightforward albeit

tedious calculation we finally determine the 4D effective action, Seff =
∫

d4x
√−γ̄ Leff,

where the Lagrangian density is

Leff = −1
2h(md)µνX

(md)
µν + 1

2umd
(0)h(md)µντµν

+

∫ ∞

3H
2

dm
[

−1
2 h(m)µνX

(m)
µν + 1

2um(0)h(m)µντµν

]

−3(1 + ε)

2
M3

5 H2 φ̂

α
(D2 + 4H2)φ̂ , (3.71)
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and where we use the gauge invariant brane stress-energy perturbation

τµν = Tµν − 4
(

M3
5 − M2

4 εH
) [

DµDν − γ̄µν(D2 + 3H2)
]

f . (3.72)

Varying this action reproduces the correct field equations for h
(m)
µν and φ̂. The scalar field

φ̂ does not have direct matter couplings at the level of quadratic action, and in fact drops

out altogether on the normal branch (ε = −1), reflecting the fact that the normalizable

scalar mode in this case is pure gauge. On the self-accelerating branch (ε = +1), this mode

is gauge-invariant, and since it sees the metric it should couple at least to gravity at higher

orders in perturbative expansion. This mode is itself a ghost when α > 0, which occurs

when brane tension is negative, as can be readily seen by using (2.10). The tensors, h
(m)
µν ,

are described mode-by-mode by the standard Pauli-Fierz Lagrangian for massive gravity.

They couple to matter with the coupling strength given by the bulk wave function overlap

with the brane um(0). For the continuum modes, this coupling is of the order of M
− 3

2

5 . For

the discrete mode, it is

umd
(0) =

1

M4

[

3M2
4 H − 2M3

5 (1 + ε)

3M2
4 H − 2M3

5 ε

]

1
2

(3.73)

On the normal branch, this coupling vanishes as σ → 0. This is simply the consequence

that the normalizable zero mode on the normal branch decouples in the limit of infinite

bulk volume, as is well known [19, 27].

In contrast, on the self accelerating branch, the coupling does not vanish, but remains

of the order of 1/M4. As we have already discussed above, for all positive values of the

tension, the helicity-0 component of this mode is a ghost, which therefore remains coupled

to matter on the brane with the gravitational strength. It does not decouple even when

in the vanishing tension limit where the accidental symmetry of [43] for the tensor of mass

m2 = 2H2 appears, because the symmetry is now realized as a Stückelberg symmetry which

mixes the lightest tensor and the normalizable scalar mode φ because they are degenerate.

This has also been discussed in the recent work [68]. Thus the dynamical degrees of freedom

of the tensionless self-accelerating solution are given by the combination (3.45), which we

repeat here for completeness,

hµν = e−
H
2

y
(

Hµν(x) − yOµνF
)

+

∫ ∞

3H
2

dm um(y)χ(m)
µν (x) +

2

H
eHy/2OµνF ,

where

Hµν(x) = lim
σ→0

(

αmd
χ(md)

µν (x) + αOµνF
)

.

The 4D tensor Hµν obeys (D2 − 4H2)Hµν = −HOµνF . The mixing of the lightest tensor

with the brane Goldstone F in effect really just promotes the particular, non-dynamical,

gauge function f that enforces the TT gauge conditions into a full-fledged dynamical mode

ξ = F +f which mixes with the field Hµν . Indeed, in this case we can rewrite the boundary

condition for Hµν(x) by subtracting the degenerate eigenmode OµνF to (3.48), which will

modify the stress-energy source for this mode to

τ (2H2)
µν = Tµν + 4M3

5

[

DµDν − γ̄µν(D
2 + 3H2)

]

ξ , (3.74)
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where we have used that in the limit of vanishing tension on the self-accelerating branch,

H → 2M3
5 /M2

4 and m2
d → 2H2. Substituting this in the action, and renormalizing Hµν →

1√
2M4

Hµν we finally find the zero tension effective lagrangian

Leff = −1
2HµνXµν(H) − 1

2H2
(

HµνHµν −H2
)

+ 1
2
√

2M4

Hµντ
(2H2)
µν

+

∫ ∞

3H
2

dm
[

−1
2 h(m)µνX

(m)
µν + 1

2um(0)h(m)µν τµν

]

, (3.75)

where τµν is given by (3.72), and τ
(2H2)
µν by (3.74). In this case the scalar ξ does not have

a normal kinetic term, and only enters the action through mixing with the discrete mode

Hµν . This occurs because 1/α vanishes as σ → 0, as per Eq. (3.36). Yet this is sufficient

to ensure that the ghost survives the vanishing tension limit from the point of view of the

effective action.

3.5 Perturbations that break Z2 symmetry

So far we have been mostly concerned with Z2 symmetric perturbations about the Z2

symmetric background (2.7), (2.9), following the conventional analysis of the stability of

DGP backgrounds. However, even with a Z2 symmetric background, if we regard the

brane as a domain wall rather than an orbifold, which may be well-motivated for DGP

branes, there is no reason why perturbations about that background should respect the Z2

symmetry. Indeed, given the notion that induced curvature is a finite width correction for

domain walls, one may argue that non-Z2 perturbations are in principle just as important

as their Z2 symmetric counterparts.

To extend the perturbations to non-Z2 symmetric configurations, we take the warp

factor to still be

a(y) = exp(εH|y|) , (3.76)

but imagine that the bulk spacetime describes two separate half-intervals, parameterized

explicitly by −∞ < y < 0 and 0 < y < ∞, with the brane positioned at y = 0. We

now consider non-Z2 symmetric perturbations about this background for the case where

Tµν = 0. These perturbations must satisfy the bulk equations of motion (2.2) and the

non-Z2 symmetric Israel equations (2.3) to linear order. In addition we demand continuity

of the metric across the brane. This comes for free by construction for Z2 symmetric

perturbations, but not otherwise. If we choose a GN gauge (δgyy = δgµy = 0) with brane

fixed at y = 0, we note that the following perturbation satisfies (2.2) and (2.3), to linear

order, and is continuous at y = 0,

δgµν(x, y) =
2(1 + ε)

H

√

a(y) sinh

(

Hy

2

)

Oµν φ̃(x) +
√

a(y)

∫ ∞

3H
2

dm sin(ωmy)χ(m)
µν (x)

(3.77)

where χ
(m)
µν is transverse-traceless, and

(D2 − 2H2)χ(m)
µν = m2χ(m)

µν , (D2 + 4H2)φ̃ = 0 (3.78)
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This solution is clearly non-Z2 symmetric since δgab(x,−y) = −δgab(x, y). Note that the

tachyonic scalar, φ̃, is not present for the normal branch (ε = −1), but is present on the self-

accelerating branch (ε = +1). It represents yet another instability for the self accelerating

background. Indeed, for ε = +1, φ̃ corresponds to a crinkling up of the brane. We can see

this by transforming to bulk-GN gauge, which is the appropriate gauge for an observer at

infinity. To transform to this gauge, we take

xµ → xµ +
Dµφ̃

Ha
sgn(y), y → y +

φ̃

a
(3.79)

The bulk metric is now given by δgyy = δgµy = 0, and

δgµν(x, y) = − 2

H
sgn(y)Oµν φ̃(x) +

√

a(y)

∫ ∞

3H
2

dm sin(ωmy)χ(m)
µν (x) (3.80)

Since the brane resides y = φ̃(x) we can immediately interpret the tachyon φ̃ as a crinkling

up of the brane. However, we stress that this instability is phenomenologically very mild

when compared to the ghost, since it is controlled by the time scale given by the inverse

mass of φ̃, τinstability ∼ H−1.

4. Shocking 4D nonlocalities

Up until now we have only considered perturbations of the backgrounds (2.7) which are

normalizable in the bulk. They admit to an effective 4D description mode-by-mode, in-

sofar as one is interested in computing their couplings and propagators as measured by

brane-localized processes. This does not imply that the full picture is 4D over all the

relevant scales in the infra-red. The additional helicities of massive gravitons spoil the 4D

description, albeit at very long distances ∝ rc, by altering momentum transfer at very low

momenta. As obscure as this may seem in the 4D effective action, it becomes transparent

in the shock wave analysis of [33]. On the other hand, once one restricts only to the nor-

malizable modes localized to the brane, as we have seen above one inevitably encounters

the lightest graviton on the self-accelerating branch, with mass in the unitarity violating

window of [44 – 46], and so with a helicity-0 ghost. This signals an instability which renders

the perturbation theory within the effective 4D description essentially meaningless. Indeed

one does not know how to define the ground state of the theory on top of which to per-

turb, and has no clear description of the evolutionary end points to which the perturbative

ghost may lead. Thus before trusting 4D perturbative description one must find ways to

neutralize the ghost.

Since the ghost comes on board with the localized massive graviton, one might try

changing perturbative definition of the theory, for example by changing prescriptions for

boundary conditions at infinity, to avoid this mode8. This possibility seems natural since

after all DGP is really a higher-dimensional theory, disguising as 4D at best over a finite

range of scales. Its ghost arises only after one ‘reduces’ the theory on the bulk-brane

8We thank G. Gabadadze for useful discussions about this approach.
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background and restricts to the normalizable bulk modes, and so the ghost may represent

merely an intrinsic instability of this reduction. A brane laden with matter may want to

move around the bulk in ways which require reintroduction of genuine bulk modes, that

are not normalizable and hence remain completely outside of the scope of the usual 4D

effective action analysis. This is supported by the observation of [33] that the singular

behavior of a shock wave sourced by a photon on the tensionless brane may be smoothed

by reintroducing a genuine bulk mode, which then resonates with the brane. A brane

carrying a photon pulse behaves like an antenna, emitting bulk gravitons.

However in this approach, energy will leak from the brane into the bulk as time goes

on, revealing the fifth dimension. This leakage may eventually strongly deform the bulk far

away. Alternatively, one could imagine a time-reversal of this process, where the description

of a particle moving on the brane requires an incoming wave in the bulk, with the phase

precisely tuned to cancel the ghost divergence, pouring energy into the brane. One might

try cutting the bulk infinity out of the picture, seeking boundary conditions that ought

to keep the brane stable and self-accelerating. It however remains difficult to imagine

how this could ever insulate the brane physics from distant bulk in the full nonlinear

covariant theory, and simultaneously retain the guise of a local, causal, 4D description.

Every time something happens on the brane, one would think that one needs to change

the bulk far away, which either requires unacceptable external interference, appearing as

nonlocalities, or the cross-bulk causal transfer of signals that would violate 4D description.

Furthermore, while individual non-normalizable modes may be treated separately in the

linearized theory, they will in general couple to each other at higher orders because they

will have non-vanishing overlaps when nonlinearities are included. Thus once any one non-

normalizable mode at a fixed 4D mass level is brought back, it should pull alongside it

modes at other mass levels. These modes may introduce new dangers.

A full bulk perturbation theory including all non-normalizable modes is beyond the

scope of our work, requiring first setting up the precise perturbative formulation of the

problem, defining the set of new orthogonal modes et cetera. However to shed some light

on the problem we can completely circumvent all those issues by going directly to a spe-

cial limit where we can solve field equations exactly. We shall solve exactly the field

equations describing the gravitational field of a photon moving on the brane, including

non-normalizable modes. Such methods have been used in the context of braneworlds in

[33, 69]. The result of this calculation shows that this time the exchange of the new, light-

est non-normalizable tensor modes also generates repulsive contributions to the potential.

This points that light non-normalizable tensor modes behave like 4D ghosts, since their

contribution to the potential is precisely the off-shell scattering amplitude for the single-

particle exchange between the brane source and a probe, which in the 4D language would

be the propagator, that would need to have its sign flipped to account for repulsive force.

To see this, let us revisit the calculation of [33], describing the shocked background

geometry (2.7) with the metric

ds2
5 = e2εH|y|

{ 4dudv

(1 + H2uv)2
− 4δ(u)Φdu2

(1 + H2uv)2
+ (

1 − H2uv

1 + H2uv
)2

dΩ2

H2
+ dy2

}

. (4.1)
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The induced metric on the brane is

ds2
4 =

4dudv

(1 + H2uv)2
− 4δ(u)Φdu2

(1 + H2uv)2
+ (

1 − H2uv

1 + H2uv
)2

dΩ2

H2
. (4.2)

These metrics are obtained from the static patch form of (2.7) written in terms of the null

coordinates u = 1
H

√

1−Hr
1+Hr exp(Ht) and v = 1

H

√

1−Hr
1+Hr exp(−Ht). To determine the field

of a photon in de Sitter geometry, for technical reasons it is simplest to actually consider

the case of two photons with the same momentum p which run in the opposite direction in

the static patch [70 – 72]. So as in [33] we add two antipodal photons on the brane, moving

along the geodesics u = 0, θ = 0, and u = 0, θ = π, by introducing metric discontinuities

along the photon worldlines by substituting dv → dv − δ(u)Φdu. This yields (4.1), (4.2).

To return to a single source we can multiply this solution by the step function Θ(π/2 − θ)

as in [72]. The photon stress-energy tensor is

T µ
ν = −σδµ

ν + 2
p√
g5

g4 uv

(

δ(θ) + δ(θ − π)
)

δ(φ)δ(u)δv
µδu

ν , (4.3)

where we use the notation g4 uv for the metric on the brane in Eq. (4.2). A straightforward

calculation [33] then yields the wave profile equation

M3
5

M2
4 H2

(

∂2
yΦ + 3εH∂|y|Φ + H2(∆2Φ + 2Φ)

)

+ (∆2Φ + 2Φ)δ(y) =
2p

M2
4

(

δ(Ω) + δ(Ω′)
)

δ(y) ,

(4.4)

where we use the shorthand δ(Ω) = δ(cos θ − 1)δ(φ) and δ(Ω′) = δ(cos θ + 1)δ(φ). The

operator ∆2 is the Laplacian on the transverse 2-sphere on the brane. Using the spherical

symmetry of the brane geometry transverse to the photon directions, the addition theorem

for spherical harmonics and linearity of (4.4), we can decompose the solution as

Φ =

∞
∑

l=0

(

Φ
(+)
l (y)Pl(cos θ) + Φ

(−)
l (y)Pl(− cos θ)

)

. (4.5)

Here Φ
(±)
l (z) are the bulk wave functions; Φ

(+)
l is sourced by the photon at θ = 0 and Φ

(−)
l

by the photon at θ = π. By orthogonality and completeness of Legendre polynomials, the

field equation (4.4) yields an identical differential equation for both modes Φ
(±)
l (z):

∂2
yΦl + 3εH∂|y|Φl + H2(2 − l(l + 1))Φl =

M2
4 H2

M3
5

((2l + 1)p

2πM2
4

− (2 − l(l + 1))Φl

)

δ(y) . (4.6)

Using pillbox integration and recalling Z2 symmetry which imposes Φl(−y) = Φl(y) we

finally determine the boundary value problem for Φl:

∂2
yΦl + 3εH∂yΦl + H2(2 − l(l + 1))Φl = 0 ,

Φl(−y) = Φl(y) , (4.7)

Φ′
l(0) +

2 − l(l + 1)

g
HΦl(0) =

H

g

2l + 1

2πM2
4

p ,
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where g = 2M3
5 /(M2

4 H) = 1/(Hrc). Hence Φ
(+)
l = Φ

(−)
l = Φl since both satisfy the same

boundary value problem. Further because Pl(−x) = (−1)lPl(x), in the expansion (4.5)

only even-indexed terms survive. This yields

Φ = 2

∞
∑

l=0

Φ2l(y)P2l(cos θ) , (4.8)

circumventing the unphysical 4D singularities of l = 1 terms [70, 72]. Solving the differential

equation in (4.7) we see that the modes are of the form χ ∼ e[±2l−(∓1+3ε)/2] H|y|. In [33]

only normalizable mode, for which ||Φ||2 ∝
∫

dy e3H|y| |Φ|2 was finite, were kept. Here we

want to see what happens when the non-normalizable modes are retained instead, and so

we use the general bulk wave function

Φ2l = A2le
−(2l+ 3ε+1

2
)H|y| + B2le

(2l− 3ε−1

2
) H|y| , (4.9)

where A2l-mode is normalizable and B2l-mode is not. Substituting this into (4.7), (4.8),

and introducing the parameter α2l by B2l = − p
4πM2

4

4l+1
(2l−1− 1−ε

2
g)(l+1− 1+ε

4
g)

α2l, because it

makes the representation (4.10) particularly transparent, after simple algebra we obtain

Φ(Ω, y) = − p

2πM2
4

∞
∑

l=0

(4l + 1)P2l(cos θ)
( 1 − α2l

(2l − 1 + 1+ε
2 g)(l + 1 + 1−ε

4 g)
e−(2l+2) H|y|

+
α2l

(2l − 1 − 1−ε
2 g)(l + 1 − 1+ε

4 g)
e(2l−1) H|y|

)

.

(4.10)

The parameters α2l are selected by the boundary conditions at the bulk infinity, and,

in the language of 4D theory, they correspond to the choice of the vacuum, since their

specification picks out a specific linear combination of the solutions to represent a particle

state with a given mass and 4-momentum. Clearly, α2l = 0 corresponds to keeping only the

normalizable modes in the description, and (4.10) reduces to the shock wave solution of [33],

whereas α2l = 1 selects only the non-normalizable modes, throwing out the normalizable

ones.

Now, how should we read the solution (4.10)? First notice that using the spherical

harmonics addition theorem, 2n+1
4π Pn(cos θ) =

∑n
m=−n Y ∗

nm(0, 0)Ynm(θ, φ), and setting n =

2l, we can rewrite (4.10) as

Φ(Ω, y) = − 2p

M2
4

∞
∑

l=0

2l
∑

m=−2l

Y ∗
2l m(0, 0)Y2l m(θ, φ) ×

×
( 1 − α2l

(2l − 1 + 1+ε
2 g)(l + 1 + 1−ε

4 g)
e−(2l+2) H|y|

+
α2l

(2l − 1 − 1−ε
2 g)(l + 1 − 1+ε

4 g)
e(2l−1) H|y|

)

. (4.11)

This is the Green’s function of the problem (4.4), describing the gravitational field of

a ‘particle’ of effective mass p in the space transverse to the photon’s u, v propagation
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plane. Now, we recall that in the conventional approach, a tree-level perturbative potential

generated by an exchange of a mediating boson is the Fourier transform of the scattering

amplitude involving the boson propagator. The formula (4.11) is precisely the same: since

the transverse space to the shock is a S2
brane ×Rbulk, the terms of the expansion (4.11) can

be interpreted as the off-shell tree level amplitudes involving the exchange of the discretized

Fourier modes on the sphere, described by the spherical harmonics, and weighed by the

bulk radial functions which account for the dilution of intermediary’s wave function due

to the warping of the bulk, when the intermediary slides just outside of the brane. The

‘quantum numbers’ l measure the Euclidean momentum of the intermediary modes on

the S2
brane, q ∼ Hl, and control the momentum transfer in a scattering process between

the photon and a distant test particle mediated by a virtual intermediary. The bulk y-

dependence scales the coupling up or down depending on the location of the probe versus

the brane.

Now, to see how the shock wave looks on the self-accelerating brane, we can set ε = 1

and y = 0 in Eq. (4.10), which yields

Φ = − 2p

M2
4

∞
∑

l=0

2l
∑

m=−2l

( 1 − α2l

(2l − 1 + g)(l + 1)
+

α2l

(2l − 1)(l + 1 − g
2 )

)

Y ∗
2l m(0, 0)Y2l m(θ, φ) .

(4.12)

These formulae are very revealing. First, let us suppose that 0 ≤ α2l ≤ 1. It is clear

from the y-dependence of (4.10) that general solutions with α2l 6= 0 peak far from the

brane, indicating that they are very sensitive to the perturbations near the bulk infinity.

However, from (4.12) we see that the local physics on the brane is not that sensitive to

distant bulk, since for large momentum transfer l À g, i.e. at short distances between the

source and the probe, HR '
√

2(1 − cos θ) ¿ 1, the α2l terms which encode bulk boundary

conditions completely cancel in the leading order in (4.10), (4.11), (4.12):
(

1−α2l

(2l−1+g)(l+1) +

α2l

(2l−1)(l+1− g

2
)

)

= 1
2l + O(gl ). Thus to the leading order (4.12) behaves the same at short

distances as the wave profile with α2l = 0, composed only of normalizable modes. Its

short distance form will be very well approximated by the Aichelburg-Sexl wave profile, in

exactly the same way as the purely normalizable wave profile [33].

However, at very low momentum transfer, or at very large distances, a general solution

(4.10) with non-normalizable modes differs very dramatically from the one built purely out

of the normalizable modes. The point is that the coefficients of the expansion of the wave

profile ∝ α2l are not positive definite when viewed as a function of l. Indeed, when g > 2,

all the coefficients in the second term change sign for all l < g/2 − 1 except for l = 0,

which remains positive because of the 1/(2l − 1) factor. Now when g < 2, terms with

l ≥ 1 remain positive, but the l = 0 term turns negative. Hence these modes come in with

opposite signs relative to the contributions from their normalizable partners ∝ 1−α2l, and

because their dependence on the transverse distance from the source is the same as for the

normalizable modes, this means that they yield repulsive contributions to the gravitational

potential at large distances. Given our interpretation of the contributions of the terms in

the expansion of the wave profile (4.11) as the discretized propagator of the exchanged
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virtual graviton, the repulsive contributions to the potential at very large distances signal

a ghost-like behavior among the lightest states in the non-normalizable tensor sector. Note

further that when g is an integer, there are pole-like singularities in the sums (4.10)-(4.12).

In the normalizable sector, the only pole in fact occurs when g = 1, that corresponds to

the limit of vanishing tension and as discussed in [33] which can be interpreted as the

instability that leads to rapid release of energy into the bulk, related to the lightest tensor

ghost. The non-normalizable contributions however have poles at all even integer values

of g > 0, that indicate that if energy were to be inserted into them at infinity, it would be

quickly transferred into the normalizable modes, which could produce large gravitational

effects on the brane.

This shows that resurrecting non-normalizable modes, if viewed as 4D phenomena,

may open the door to new ghost-like modes, over and above the helicity-0/scalar ghost.

In this case one further needs to recheck carefully the scalar sector for any pathologies

among the non-normalizable scalar modes, which cannot be revealed by the shock wave

analysis as they are not sourced by relativistic particles. Note that taking α2l outside of

the interval [0, 1] will not remove the repulsive contributions to the shock wave, but would

further exacerbate the problem. For α2l > 1, all the normalizable mode contributions

would switch sign, whereas for α2l < 0, all but the lightest non-normalizable modes would

be repulsive. Thus it appears that the repulsive terms in the non-normalizable tensor sector

will be avoided only if we set α2l = 0, but then this retains only the normalizable modes

in the helicity-0 sector as well, leaving one with the helicity-0 ghost.

Interestingly, one can check explicitly using (4.10) that the situation on the normal

branch is better, in the sense that the relative sign between the normalizable and non-

normalizable contributions remains the same for all the terms in the expansion. In fact, on

the normal branch, the only term which contributes to the wave profile with a negative sign

is the l = 0 mode, but this mode is completely constant on the brane and produces no force

on brane particles. It will only repel bulk probes, but this is consistent with the picture

that domain walls in flat space, when viewed from the wall’s rest frame, exert repulsive

force on particles in the bulk [55].

5. Summary

In this work we have reconsidered the perturbative description of codimension-1 DGP

vacua. Our results confirm that in the normalizable sector of modes, there is always a

perturbative ghost on the self-accelerating branch. For positive brane tension, it resides

in the localized lightest graviton multiplet as the helicity-0 state, whereas for the negative

tension it is the scalar ‘radion’-like field. In the borderline case of zero tension, describing

a background where the brane expansion accelerates solely due to gravity modification,

the ghost is an admixture of the helicity-0 and scalar modes, which become completely

degenerate. In contrast, the normal branch vacua are free of ghosts, at least when the

brane tension is non-negative. This agrees with the findings of [37, 68], with the advantage

that our approach manifestly shows how the bulk boundary conditions prevent the ghost

from decoupling.
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The ghost makes a simple 4D perturbative analysis of the self-accelerating dynamics

prohibitive. It signals an instability which renders the effective 4D description perturba-

tively meaningless. Off hand, one does not know how to define the ground state of the

theory, and has no clear description of the evolutionary end points to which the pertur-

bative ghost may lead. To illustrate the dangers from ghosts, let us review a very simple,

intuitive example of the classical ghost instability which, to our surprise, does not seem

to be widely discussed. Consider a system of two degenerate harmonic oscillators x and

y. One could solve it by solving each individual oscillator problem and then define the

full set of states as the direct product of the individual oscillators. However, these states

do not naturally reflect the O(2) rotational symmetry of the system, which can be made

manifest by going to polar coordinates x = R cos θ, y = R sin θ. Then the angle θ is a

Goldstone mode, whose conserved charge is the angular momentum of the system, while

the radial variable is an anharmonic oscillator moving in an effective potential composed

of the original parabolic piece far away and the centrifugal barrier erected by the angular

momentum close in. This system is classically stable. Now imagine making one of the

original harmonic oscillators purely imaginary, e.g. y → iy. This changes the symmetry

group to O(1, 1), the ‘polar’ coordinate maps become hyperbolic functions, and the phase

is now the ghost, whereas the radial mode remains a normal field. The ghost’s centrifugal

contribution to the radial motion is now an infinite well, instead of a barrier. Thus even

a tiniest perturbation with non-zero angular momentum will send the oscillator spiralling

into the infinitely deep centrifugal well, spinning it up indefinitely as it goes in. In terms

of the original Cartesian variables, the two oscillators gain infinite kinetic energy at the

expense of each other, while keeping their difference constant. When the physical oscillator

x couples to other normal degrees of freedom, it can transfer its kinetic energy to them,

destabilizing the rest of the world. The rate of the instability is controlled by the oscillator

period, and in a field theory where one has a tower of ghastly oscillators with arbitrarily

high frequencies, the energy transfer rates can therefore be very fast. Interestingly, this

situation is reminiscent9 of what one encounters on the self-accelerating branch of DGP,

where among the degenerate lightest gravitons there is a ghost.

We should stress that we do not claim that it is ultimately impossible to get rid of the

ghost. The question is, what is the price one must pay to exorcize it. We have considered

what happens when one restores non-normalizable modes in the bulk, and allows them to

couple to brane matter. This may be an interesting arena to explore if by abandoning

description in terms of normalizable modes alone, some of the effects of the helicity-0 ghost

may be controlled. If one reinstates the bulk scalar modes that could couple to the helicity-

0 ghost, however, by bulk general covariance one should also bring in the tensors. All of

these modes dwell outside of the realm of 4D effective theory at all scales. Even so, our

direct calculation of their couplings to relativistic brane matter, modelled by a photon

zipping along the brane, shows that at short distances from it, the photon’s gravitational

field follows closely the 4D form, being indistinguishable from the purely normalizable

9The differences are the presence of background de Sitter geometry and a different isospin group (O(2, 1)

instead of O(1, 1)) but much of the rest appears the same, at least the linearized perturbation theory level.
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contributions in the leading order of the expansion in g = 1/Hrc. However, we have

noted new repulsive gravitational effects at large distances from the source, arising from

the non-normalizable tensor sector, which indicate that low momentum tensors behave as

ghosts. This issue clearly deserves more attention, and it would be interesting to develop

a description of the processes beyond quadratic perturbation theory to see how the system

evolves.

We note in passing that another possibility may be to consider altering the theory

at the level of the action itself, for example by adding extra terms in the bulk or on the

brane, and compactifying the bulk by adding new branes10. In the former case adding

the Gauss-Bonnet term in the bulk seems an intriguing possibility since the resulting field

equations are of second order and so they maintain the simple distributional brane setup

without adding new, possibly dangerous, graviton states of generic higher-derivative mod-

els. Cutting the bulk at a finite distance will reintroduce the zero mode graviton, and may

change the boundary conditions for the massive modes, affecting the values of masses. If

this could lift the localized lightest tensor out of the unitarity-violating window, and/or

break degeneracies with scalar modes, the ghost instability may be tamed. One then

expects to be left with a strongly coupled massive graviton on the original DGP brane,

which could dominate over the zero mode in a range of scales, and so one may consider

phenomenological aspects of such a multi-gravity theory. However compactifying the bulk

would turn DGP immediately into an effective 4D theory at large scales, exposing it to

the edge of the Weinberg’s venerable no-go theorem [4] for the adjustment of cosmological

constant. Thus while removing the ghost by a compactification of the bulk might work,

it may automatically restore the usual fine-tunings of the 4D vacuum energy, completely

obscuring the whole point of self-acceleration.

Thus it is doubtful that self-acceleration in its present guise may serve as a model of the

current epoch of cosmic acceleration, since after all it does appear that some perturbative

description of our universe at the largest scales should exist. The self-accelerating branch

does not seem to fit this bill due to its occult sector. Yet, if one wants to study the

implications of modified gravity, one may still find a useful framework among the brane-

induced gravity models. The simplest one may be the normal branch solutions. True, they

undergo cosmic acceleration at the right rate because one fine-tunes the brane tension to

just the right value by hand, σ ' (10−3eV )4. But there is no ghost, and perturbative

description is reliable. If one then also tunes the scale of modification of gravity, rc ∼ 1/H,

one gets interesting signatures of weakened gravity at the largest scales. Namely although

there is a zero mode graviton on the normal branch, the light bulk modes also contribute

to gravity at scales smaller than rc ∼ 1/H and the effective graviton that mediates sub-

horizon interactions is really a resonance composed of many modes. Thus local gravity is

stronger than the horizon scale gravity. At the horizon scale, the force weakens because

the effective momentum transfer of the massive admixtures changes from 1/q2 to 1/q as

the extra dimension opens up. This weakening of gravity may simultaneously change the

cosmic large scale structure [34] and masquerade the cosmological constant as dark energy

10We understand that K. Izumi and T. Tanaka are pursuing such approaches.
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with w < −1 [73], in a way that could be accessible to observations.
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6. Proof of tensor decomposition in eq. (3.8)

To prove (3.8) we first introduce auxiliary fields Σµν = hµν − h
4 γ̄µν , Bµ and B, where we

require that Bµ and B are solutions of differential equations

(D2 + 4H2)B =
2

3
DµDνΣµν ,

D2Bµ + DνDµBν − 1

2
DµB = DνΣµν . (6.1)

These differential equations are integrable, despite the cumbersome nature of the vector

field equation that appears to mix different components. We can simplify the system by

introducing an additional scalar auxiliary field, as follows. First, commute through the

derivatives acting on the vector, using the standard rules for commutators of covariant

derivatives in de Sitter metric γ̄µν and rewrite the vector equation as

(D2 + 3H2)Bµ = DνΣµν − Dµ(DνB
ν − 1

2
B) . (6.2)

Next multiply this equation by Dµ, commute the derivatives again, and using the defining

equation for B to eliminate DµDνΣµν , finally obtain the equation for Ψ = B − DµBµ :

(D2 + 3H2)Ψ = 0 . (6.3)

Thus Ψ is a completely free field on de Sitter background, and this equation can be solved

at least in principle.
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We can now consider a different system of equations governing the auxiliary fields,

where we eliminate DµBµ in (6.2) in terms of Ψ and B. The full system then becomes

(D2 + 3H2)Ψ = 0 ,

(D2 + 4H2)B =
2

3
DµDνΣµν ,

(D2 + 3H2)Bµ = DνΣµν − Dµ(
B

2
− Ψ) . (6.4)

Clearly, once we find a solution Ψ and determine a B, which we can do because we know the

source in the B equation, given by the original tensor hµν , we can integrate the remaining

4 equations for the vector to get the full solution. It will, clearly, depend on the choice of

the auxiliary function Ψ. To select precisely the required solution of (6.1) we must extract

that solution of (6.4) which automatically satisfies Ψ = B − DµBµ. So indeed multiplying

the vector field with Dµ yields

3H2Ψ = (D2 + 6H2)(B − DµBµ) , (6.5)

and when we exclude the null eigenvalue spurions of D2 + 6H2 from B − DµBµ by an

appropriate choice of boundary conditions11, the field equation (D2 + 3H2)Ψ = 0 implies

(D2 + 3H2)(B − DµBµ) = 0. In this case Ψ1 = B − DµBµ solves the same equation as

Ψ. But then, since (D2 + 6H2)Ψ1 = 3H2Ψ1, comparing with (6.5) gives Ψ1 = Ψ. Thus as

required Ψ = B −DµBµ, and any such solution of (6.4) will be exactly a solution of (6.1).

Having a solution, we can now define the tensor

h̄µν = Σµν − DµBν − DνBµ +
B

2
γ̄µν , (6.6)

and note, using the differential equations (6.1) that it is transverse, Dµh̄µ
ν = 0. Its trace

is

h̄µ
µ = 2B − 2DµBµ , (6.7)

and so we can eliminate B from the solution writing it as B = DµBµ + h̄/2. Moreover,

we can separate the vector field Bµ as a Lorentz-gauge vector Aµ, DµAµ = 0, plus a scalar

gradient,

Bµ = Aµ +
1

2
Dµφ , (6.8)

and substitute all this back in (6.6). Solving for the original tensor field hµν , we write

hµν = h̄µν + DµAν + DνAµ + DµDνφ − 1

4
γ̄µνD

2φ +
h − h̄

4
γ̄µν , (6.9)

Now, we are almost there: the field h̄µν is transverse, but not yet traceless. However its

trace is equal to the auxiliary free field Ψ by Eq. (6.7), which we can pick to be exactly

11We can always exclude these spurions, because by (D2 +3H2)Dµϑ̂ = Dµ(D2 +6H2)ϑ̂, the gauge shifts

Bµ → Bµ + Dµϑ̂ by functions obeying (D2 + 6H2)ϑ̂ = 0 drop out from the field equations (6.4) but shift

the spurion in B − DµBµ by 6H2ϑ̂. So we can simply choose ϑ̂ to completely cancel away the spurion.
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zero by choosing appropriate boundary conditions, amounting to gauge fixing Bµ. Hence

the tensor is

h̄µν |Ψ=0 = hTT
µν , (6.10)

which is also traceless! Thus indeed we recover (3.8), as claimed. Note that nowhere in

this decomposition did we need to specify anything about y-dependence, which was treated

as an extra parameter. Hence, Eq. (3.8) will remain valid for a Fourier transform of the

metric perturbation as well. So we see that an arbitrary perturbation in the GN gauge can

be separated as a 5-component transverse-traceless tensor, a 3-component Lorentz vector,

and 2 scalars, in addition to the brane location F , which is a separate 4D field.

7. Helicity-0 ghosts in de Sitter space

Here we review the proof that a helicity-0 mode of the massive Pauli-Fierz spin-2 theory in

de Sitter space is a ghost if the mass obeys 0 < m2 < 2H2. In the early work of Higuchi [44]

this was demonstrated by showing that the helicity-0 sector of the Hilbert space contains

negative norm states, but since then simpler methods based on Hamiltonian analysis have

been developed [46]. Here we largely follow the analysis of [46], although we note that a

Lagrangian analysis based on correctly identifying the residual gauge symmetries of the

helicity-0 sector would produce equivalent results.

We start with the Pauli-Fierz massive spin-2 theory in a background metric γ̄µν , which

is given by L =
√−γ̄ − 1

2hµνX
(m)
µν , where X

(m)
µν is defined in Eqs. (3.68) and (3.16). We

take γ̄µν to be the de Sitter metric (2.8), and Dµ its covariant derivative. This Lagrangian

describes the localized lightest tensor multiplet on the self-accelerating branch, with mass

m = md, which for positive brane tension lies in the unitarity-violating window 0 < m2 <

2H2. The explicit form of the Pauli-Fierz action is

SPF =

∫

d4x
√−γ̄ − 1

4
DαhµνDαhµν + 1

2Dµhµ
νDαhν

α − 1
2DµhµνDνh + 1

4DµhDµh

−1
2H2hµνhµν − 1

4H2h2 − m2

4

(

hµνhµν − h2
)

, (7.1)

where the hµν are the general metric perturbations. Now, using the after-the-fact wisdom

[46], we know that if the mass m2 were zero, this theory would only have two helicity-

2 excitations as the propagating modes. Thus the modifications can only arise because

some of the scalar and vector perturbations of the general 4D metric do not decouple

when m2 6= 0. Further, because the theory remains Lorentz-invariant, the vectors and the

scalars decouple from the tensors, and moreover the vectors can only yield the helicity-1

modes. Thus the helicity-0 mode can only arise from the scalar perturbations, which we

can parameterize as

hij = 2e−
1

2
Ht (∂i∂jE + Aδij) , hit = e−

1

2
Ht ∂iB , htt = 2e−

3

2
Ht φ . (7.2)

Here ∂i are spatial derivatives. We have normalized the perturbations by the appropriate

powers of eHt to simplify the analysis, following [46]. Plugging the perturbations (7.2) into
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(7.1) yields, with SPF =
∫

dtd3x L,

L = −6Ȧ2 − 4ȦẊ + (4m2 − 9H2)AX + A

(

6m2 − 27

2
H2 − 2e−2Ht∆

)

A

−φ
[

4HẊ + 2(m2 − 3H2)X + 12HȦ + 6(m2 − 3H2)A − 4e−2Ht∆A
]

+e−Ht∆B
(

4Hφ + 4Ȧ − 6HA
)

− 6H2φ2 − 1
2m2B∆B , (7.3)

where we have introduced X = ∆E, with ∆ =
∑

i ∂2
i the flat 3-space Laplacian, and

denoted time differentiation by a dot. To define the Hamiltonian as in [46], we write down

the conjugate momenta ΠQ = ∂L
∂Q̇

, which are

ΠX = −4Ȧ − 4Hφ , ΠA = −12Ȧ − 4Ẋ − 12Hφ + 4e−2Ht∆B ,

ΠB = Πφ = 0 . (7.4)

Thus the Lagrangian and the Hamiltonian are related by L = ΠXẊ + ΠAȦ − H, and so

using this and (7.4) the Hamiltonian is given by

H =
3

8
Π2

X − 1

4
ΠXΠA + A

(

27

2
H2 − 6m2 + 2e−2Ht∆

)

A + (9H2 − 4m2)AX

+φ
[

2(m2 − 3H2)X + 6(m2 − 3H2)A − 4e−2Ht∆A − HΠA

]

+e−Ht∆B (ΠX + 6HA) − 1
2m2B∆B (7.5)

From the Hamiltonian we immediately see that the fields φ and B aren’t propagating -

which of course comes as no surprise, since they are the scalar remnants of the shift and

lapse functions. Varying the Hamiltonian with respect to them yields the Hamiltonian and

momentum constraints respectively, which can be written as

ΠA − 1

H

[

2(m2 − 3H2)X + 6(m2 − 3H2)A − 4e−2Ht∆A
]

= 0 ,

B +
e−Ht

m2
(ΠX + 6HA) = 0 , (7.6)

where we are holding m2 6= 0 in the last equation. Substituting these equations in the

Lagrangian we integrate out the lapse and shift, and integrating by parts find

L =

(

ΠX − 2

H
(m2 − 3H2)A

)

Ẋ − ΠX

(

3

8
− e−2Ht∆

2m2

)

ΠX +
1

2H
(m2 − 3H2)ΠXX

+ΠX

[

3

2H
(m2 − 3H2) − 1

m2H
(m2 − 6H2)e−2Ht∆

]

A + (4m2 − 9H2)AX

+A

[

6m2 − 27

2
H2 − 6

m2
(m2 − 3H2)e−2Ht∆

]

A (7.7)

A field redefinition ΠX = p + 2
H (m2 − 3H2)A recasts the Lagrangian as

L = pẊ − p

(

3

8
− e−2Ht∆

2m2

)

p + p
e−2Ht∆

H
A +

ν2

2H
pX +

3m2ν2

2H2
A2 +

m2ν2

H2
XA , (7.8)

– 40 –



J
H
E
P
1
0
(
2
0
0
6
)
0
6
6

where ν2 = m2 − 2H2. This shows that with these variables A is not a dynamical field. Its

field equation is algebraic, and for m2 6= 2H2 it yields A = −X
3 − He−2Ht∆

3m2ν2 p. Substituting

this into (7.8) gives

L = pẊ − p

[

e−4Ht∂4

6m2ν2
− e−2Ht∆

2m2
+

3

8

]

p − p

[

e−2Ht∆

3H
− 1

2H
(m2 − 3H2)

]

X − m2ν2

6H2
X2 .

(7.9)

At long last, we make the one last field redefinition,

X = q +
H

2m2ν2

[

3(m2 − 3H2) − 2e−2Ht∆
]

p , (7.10)

which casts the Lagrangian in the form

L = pq̇ − m2ν2

6H2
q2 − 3H2

2m2ν2
p

(

m2 − 9H2

4
− e−2Ht∆

)

p . (7.11)

This equation looks slightly unusual, since the Lagrangian seems to depend on the spatial

gradients of the ‘momentum’ p rather than the ‘field’ q. However, this is just a mirage,

which can be easily removed by a canonical transformation q = −π, p = ϕ, and the

integration by parts of pq̇ = −ϕπ̇ = πϕ̇ − d
dt(ϕπ). Dropping the total derivative, we can

extract the final Hamiltonian from the Lagrangian L = πϕ̇ −H, to find

H =
m2ν2

6H2
π2 +

3H2

2m2ν2
ϕ

(

m2 − 9H2

4
− e−2Ht∆

)

ϕ . (7.12)

We immediately see that when ν2 < 0 (i.e. 0 < m2 < 2H2) the Hamiltonian is negative

definite, and so the field ϕ is a ghost. It can be viewed as literally a massive scalar field

covariantly coupled to de Sitter gravity, with the sign of the Lagrangian reversed. When

m2 = 0 and ν2 = 0 the ghost decouples in the pure Pauli-Fierz theory, which can be

glimpsed at from the canonically normalized scalar ϕ = m|ν|√
3H

ϕC , π =
√

3H
m|ν| πC , indicating

that all the perturbative Lagrangian couplings of ϕ to matter are proportional to positive

powers of m|ν|. This does not occur for the self-accelerating branch DGP because of the

additional scalar localized mode, as discussed in the text and in [68].

Also note that the 0 < m2 < 2H2 ghost has a very mild tachyonic instability, induced

by de Sitter expansion. One can see it from the field equation for the Fourier components

of ϕC , which from (7.12) is, by setting ϕC = ϕ̂C(k)ei~k·~x,

¨̂ϕC(k) +
(

m2 − 9H2

4
+ ~k2e−2Ht

)

ϕ̂C(k) = 0 . (7.13)

As time goes on, the 3-momentum term ∝ ~k2 becomes insignificant, so that ϕ̂C(k) →
exp(±

√

9H2

4 − m2 t) for m2 < 2H2. This behavior changes for all gravitons above de

Sitter gap m2 ≥ 9H2

4 (as discussed in [46]), and when m2 = 0 the ghost is absent in the

first place. Yet it is clear that these instabilities simply correspond to the freezing out

of long wavelength ghost modes at super-horizon scales, as is common in inflation, and it

would be interesting to explore the implications of this mechanism for DGP.
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